
DBMaker
SQL Command and Function Reference

CASEMaker Inc./Corporate Headquarters

1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.

www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2016 by CASEMaker Inc.
Document No. 645049-236012/DBM54-M01292016-SQLR

Publication Date: 2016-01-29

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README.TXT
after installing the CASEMaker DBMaker software.

Trademarks
CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI is a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

Notices
The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

This text is not here.

http://www.casemaker.com
http://www.casemaker.com/support

 1Contents

©Copyright 1995-2017 CASEMaker Inc. i

Contents

1 Introduction 1-1

1.1 Additional Resources 1-2

1.2 Technical Support 1-3

1.3 Document Conventions 1-4

2 SQL Basics ... 2-1

2.1 Syntax Diagrams 2-2

2.2 Data Types .. 2-3
BIGINT ... 2-3
BIGSERIAL(start) ... 2-3
BINARY (size) .. 2-4
CHAR (size) .. 2-5
DATE ... 2-5
DECIMAL (NUMERIC) ... 2-6
DOUBLE .. 2-7
FILE ... 2-7
FLOAT .. 2-8
INTEGER ... 2-9
JSONCOLS ... 2-9

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. ii

LONG VARBINARY (BLOB) ... 2-14
LONG VARCHAR (CLOB) ... 2-14
NCHAR (size) ... 2-15
NVARCHAR (size) .. 2-16
OID .. 2-17
REAL .. 2-17
SERIAL (start) .. 2-18
SMALLINT ... 2-19
TIME .. 2-19
TIMESTAMP ... 2-20
VARCHAR (size) ... 2-21
Media Types .. 2-21

2.3 Data Conversion 2-23
Explicit Data Conversion .. 2-23
Implicit Data Conversion .. 2-24

2.4 RESERVED WORDS 2-28

3 SQL Commands 3-1

3.1 ABORT BACKUP 3-2

3.2 ABORT CONNECTION 3-4

3.3 ADD TO GROUP 3-5

3.4 ADD TRACE ... 3-7

3.5 ALTER DATAFILE 3-8

3.6 ALTER INDEX RENAME 3-10

3.7 ALTER PASSWORD 3-11

3.8 ALTER REPLICATION ADD REPLICATE 3-13

3.9 ALTER REPLICATION DROP REPLICATE3-18

3.10 ALTER SCHEDULE 3-21

3.11 ALTER TABLE ADD COLUMN 3-26
Column Definition ... 3-26

 1Contents

©Copyright 1995-2017 CASEMaker Inc. iii

3.12 ALTER TABLE ADD DYNAMIC COLUMN3-32

3.13 ALTER TABLE DROP COLUMN 3-34

3.14 ALTER TABLE DROP DYNAMIC COLUMN3-36

3.15 ALTER TABLE DROP FOREIGN KEY 3-38

3.16 ALTER TABLE DROP PRIMARY KEY 3-40

3.17 ALTER TABLE FOREIGN KEY 3-42

3.18 ALTER TABLE MODIFY COLUMN 3-46
Column Definitions ... 3-46

3.19 ALTER TABLE MODIFY DYNAMIC COLUMN3-51

3.20 ALTER TABLE PRIMARY KEY 3-53

3.21 ALTER TABLE RENAME 3-55

3.22 ALTER TABLE SET OPTIONS 3-56

3.23 ALTER TABLE TO ANOTHER TABLESPACE3-59

3.24 ALTER TABLESPACE 3-61

3.25 ALTER TABLESPACE DROP DATAFILE 3-66

3.26 ALTER TRIGGER ENABLE 3-67

3.27 ALTER TRIGGER REPLACE 3-69
For Each Row Clause .. 3-70
For Each Statement Clause .. 3-72

3.28 BEGIN BACKUP 3-75

3.29 BEGIN WORK 3-80

3.30 CHECK .. 3-81

3.31 CHECKPOINT 3-84

3.32 CLOSE DATABASE LINK 3-86

3.33 COMMIT WORK 3-88

3.34 CREATE COMMAND 3-90

3.35 CREATE DATABASE LINK 3-93

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. iv

3.36 CREATE DOMAIN 3-96

3.37 CREATE GROUP 3-100

3.38 CREATE HASH INDEX 3-101

3.39 CREATE INDEX 3-102

3.40 CREATE PROCEDURE 3-107
FROM FILE ... 3-107
ESQL SP .. 3-108
JAVA SP .. 3-109
SQL SP ... 3-112

3.41 CREATE REPLICATION 3-114

3.42 CREATE SCHEDULE 3-119

3.43 CREATE SCHEMA 3-126

3.44 CREATE SYNONYM 3-129

3.45 CREATE TABLE 3-131
Column Definitions ... 3-134
Primary Key and Unique Definitions ... 3-137
Foreign Key Definitions .. 3-138
Table Options ... 3-141
CREATE TABLE AS SELECT ... 3-146

3.46 CREATE TABLESPACE 3-147

3.47 CREATE TEXT INDEX 3-152
Signature Text Index .. 3-153
Inverted File Text Index ... 3-155

3.48 CREATE TRIGGER 3-157
For Each Row Clause .. 3-159
For Each Statement Clause ... 3-160

3.49 CREATE VIEW 3-163

3.50 DECLARE SET 3-165

3.51 DELETE ... 3-168

 1Contents

©Copyright 1995-2017 CASEMaker Inc. v

3.52 DROP COMMAND 3-170

3.53 DROP DATABASE LINK 3-172

3.54 DROP DOMAIN 3-174

3.55 DROP GROUP 3-176

3.56 DROP INDEX 3-177

3.57 DROP PROCEDURE 3-178

3.58 DROP REPLICATION 3-179

3.59 DROP SCHEDULE 3-181

3.60 DROP SCHEMA 3-182

3.61 DROP SYNONYM 3-183

3.62 DROP TABLE 3-185

3.63 DROP TABLESPACE 3-187

3.64 DROP TEXT INDEX 3-188

3.65 DROP TRIGGER 3-189

3.66 DROP VIEW 3-191

3.67 END BACKUP 3-193

3.68 EXECUTE COMMAND 3-195

3.69 GRANT (Execute Privileges) 3-197

3.70 GRANT (Object Privileges) 3-199

3.71 GRANT (Security Privileges) 3-203

3.72 INSERT.. 3-206

3.73 KILL CONNECTION 3-210

3.74 LOAD STATISTICS 3-211

3.75 LOCK TABLE 3-212

3.76 REBUILD COMMAND 3-214

3.77 REBUILD INDEX 3-215

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. vi

3.78 REBUILD INDEX IN ANOTHER
TABLESPACE 3-216

3.79 REBUILD TEXT INDEX 3-217

3.80 REMOVE FROM GROUP 3-219

3.81 REMOVE TRACE 3-221

3.82 RESUME SCHEDULE 3-222

3.83 REVOKE (Execute Privileges) 3-223

3.84 REVOKE (Object Privileges) 3-225

3.85 REVOKE (Security Privileges) 3-228

3.86 ROLLBACK .. 3-231

3.87 SAVEPOINT 3-233

3.88 SELECT ... 3-234
SELECT WITHOUT FROM .. 3-235
SELECT Clause .. 3-236
FROM Clause ... 3-237
WHERE Clause .. 3-242
Compound Comparisons .. 3-248
Join Conditions ... 3-248
GROUP BY Clause ... 3-257
HAVING Clause .. 3-259
ORDER BY Clause ... 3-259
FOR BROWSE Clause ... 3-263
Aggregate Functions .. 3-264
WINDOW Functions .. 3-266
XML Functions .. 3-268

3.89 SET CONNECTION OPTIONS 3-272
No Value Options .. 3-272
ON/OFF Options ... 3-273
Number Options .. 3-276
String Options ... 3-278

 1Contents

©Copyright 1995-2017 CASEMaker Inc. vii

Symbol Options .. 3-281
Transaction Options .. 3-285

3.90 SET CLIENT_CHAR_SET 3-286

3.91 SET ERRMSG_CHAR_SET 3-288

3.92 SUSPEND SCHEDULE 3-290

3.93 SYNC AUTO INDEX 3-291

3.94 SYNCHRONIZE SCHEDULE 3-292

3.95 UNLOAD STATISTICS 3-293
UNLOAD STATISTICS Object List ... 3-294

3.96 UPDATE .. 3-295

3.97 UPDATE STATISTICS 3-297
UPDATE STATISTICS Object List .. 3-297

3.98 UPDATE STATISTICS SET 3-299

3.99 UPDATE TABLESPACE STATISTICS .. 3-301

4 Functions ... 4-1

4.1 Built-in Functions 4-2
4.1.1. ABS .. 4-3
4.1.2. ACOS .. 4-4
4.1.3. ADD_DAYS.. 4-5
4.1.4. ADD_HOURS .. 4-6
4.1.5. ADD_MINS .. 4-7
4.1.6. ADD_MONTHS .. 4-8
4.1.7. ADD_SECS ... 4-9
4.1.8. ADD_YEARS ... 4-10
4.1.9. ASCII .. 4-11
4.1.10. ASIN ... 4-13
4.1.11. ATAN ... 4-14
4.1.12. ATAN2 ... 4-15
4.1.13. ATOF .. 4-16
4.1.14. BLOBLEN ... 4-17

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. viii

4.1.15. BLOBLENEX ... 4-18
4.1.16. CEILING ... 4-19
4.1.17. CHAR .. 4-20
4.1.18. CHAR_LENGTH .. 4-22
4.1.19. CHARACTER_LENGTH ... 4-23
4.1.20. CHECKMEDIAFORMAT .. 4-24
4.1.21. CONCAT ... 4-25
4.1.22. COS ... 4-27
4.1.23. COSH .. 4-28
4.1.24. COT ... 4-29
4.1.25. CURDATE .. 4-30
4.1.26. CURRENT_DATE .. 4-31
4.1.27. CURRENT_TIME ... 4-33
4.1.28. CURRENT_TIMESTAMP .. 4-35
4.1.29. CURRENT_USER ... 4-37
4.1.30. CURTIME .. 4-39
4.1.31. DATABASE .. 4-40
4.1.32. DATEPART .. 4-41
4.1.33. DAYNAME ... 4-42
4.1.34. DAYOFMONTH ... 4-43
4.1.35. DAYOFWEEK ... 4-44
4.1.36. DAYOFYEAR .. 4-45
4.1.37. DAYS_BETWEEN ... 4-46
4.1.38. DEGREES ... 4-47
4.1.39. DOCTOTXT ... 4-48
4.1.40. EXISTSNODE ... 4-49
4.1.41. EXP ... 4-50
4.1.42. EXTRACT ... 4-51
4.1.43. EXTRACTVALUE .. 4-52
4.1.44. FILEEXIST ... 4-53
4.1.45. FILELEN ... 4-54
4.1.46. FILELENEX ... 4-55
4.1.47. FILENAME ... 4-56
4.1.48. FIX ... 4-57

 1Contents

©Copyright 1995-2017 CASEMaker Inc. ix

4.1.49. FLOOR ... 4-58
4.1.50. FREXPE ... 4-59
4.1.51. FREXPM .. 4-60
4.1.52. FTOA .. 4-61
4.1.53. HIGHLIGHT .. 4-62
4.1.54. HITCOUNT .. 4-64
4.1.55. HITPOS .. 4-65
4.1.56. HMS .. 4-67
4.1.57. HOUR ... 4-68
4.1.58. HTMLHIGHLIGHT ... 4-69
4.1.59. HTMLTITLE .. 4-71
4.1.60. HTMTOTXT .. 4-72
4.1.61. HYPOT .. 4-73
4.1.62. INSERT .. 4-74
4.1.63. INVDATE ... 4-76
4.1.64. INVTIME .. 4-77
4.1.65. INVTIMESTAMP .. 4-78
4.1.66. LAST_DAY ... 4-79
4.1.67. LCASE .. 4-80
4.1.68. LDEXP ... 4-81
4.1.69. LEFT ... 4-82
4.1.70. LENGTH ... 4-83
4.1.71. LOCATE .. 4-84
4.1.72. LOG .. 4-86
4.1.73. LOG10 .. 4-87
4.1.74. LOWER .. 4-88
4.1.75. LTRIM .. 4-89
4.1.76. MDY .. 4-90
4.1.77. MINUTE .. 4-91
4.1.78. MOD ... 4-92
4.1.79. MODFI ... 4-93
4.1.80. MODFM... 4-94
4.1.81. MONTH ... 4-95
4.1.82. MONTHNAME ... 4-96

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. x

4.1.83. NEXT_DAY ... 4-97
4.1.84. NOW ... 4-98
4.1.85. PDFTOTXT .. 4-99
4.1.86. PI .. 4-100
4.1.87. POSITION .. 4-101
4.1.88. POW .. 4-103
4.1.89. PPTTOTXT ... 4-104
4.1.90. PURETEXT .. 4-105
4.1.91. QUARTER .. 4-106
4.1.92. RADIANS .. 4-107
4.1.93. RAND ... 4-108
4.1.94. REPEAT ... 4-109
4.1.95. REPLACE .. 4-110
4.1.96. RIGHT .. 4-111
4.1.97. RND .. 4-112
4.1.98. ROUND ... 4-113
4.1.99. RTRIM .. 4-115
4.1.100. SECOND ... 4-116
4.1.101. SECS_BETWEEN ... 4-117
4.1.102. SESSION_USER .. 4-118
4.1.103. SIGN ... 4-119
4.1.104. SIN ... 4-120
4.1.105. SINH ... 4-121
4.1.106. SPACE .. 4-122
4.1.107. SQRT ... 4-123
4.1.108. STRTOINT .. 4-124
4.1.109. SUBBLOB .. 4-125
4.1.110. SUBBLOBTOBIN ... 4-126
4.1.111. SUBBLOBTOCHAR ... 4-127
4.1.112. SUBSTRING ... 4-128
4.1.113. TAN ... 4-130
4.1.114. TANH ... 4-131
4.1.115. TIMEPART ... 4-132
4.1.116. TIMESTAMPADD .. 4-133

 1Contents

©Copyright 1995-2017 CASEMaker Inc. xi

4.1.117. TIMESTAMPDIFF .. 4-135
4.1.118. TRIM ... 4-136
4.1.119. UCASE ... 4-139
4.1.120. UPPER .. 4-140
4.1.121. USER ... 4-141
4.1.122. UTFConvert ... 4-142
4.1.123. WEEK .. 4-143
4.1.124. XLSTOTXT ... 4-144
4.1.125. XMLUPDATE .. 4-145
4.1.126. YEAR .. 4-146

4.2 User-Defined Functions 4-1
4.2.1. AES_DECRYPT .. 4-2
4.2.2. AES_ENCRYPT .. 4-4
4.2.3. DATETOSTR ... 4-6
4.2.4. TIMETOSTR .. 4-7
4.2.5. TIMESTAMPTOSTR .. 4-8
4.2.6. TO_DATE ... 4-10

5 System-Stored Procedures 5-1

5.1 APPENDBLOB .. 5-2

5.2 APPENDBLOBBYOID 5-4

5.3 COPYTABLE .. 5-6

5.4 GETCPUNUMBER 5-8

5.5 GETSYSTEMOPTION 5-9

5.6 SCHEDULE_ALTER 5-10

5.7 SCHEDULE_CREATE 5-13

5.8 SCHEDULE_DISABLE 5-16

5.9 SCHEDULE_DROP 5-17

5.10 SCHEDULE_ENABLE 5-18

5.11 SCHEDULE_RELOAD 5-19

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. xii

5.12 SCHELOG_CLEAN 5-20

5.13 SETAFFINITY 5-21

5.14 SETPRIORITY 5-23

5.15 SETSYSTEMOPTION 5-25

5.16 SETSYSTEMOPTIONW 5-27

5.17 SOADD .. 5-29

5.18 SOCREATE .. 5-30

5.19 SODROP .. 5-31

5.20 SOLOCK .. 5-32

5.21 SOREAD .. 5-33

5.22 SOSET ... 5-34

5.23 SOUNLOCK ... 5-35

5.24 START_DMSCHSVR 5-36

5.25 STOP_DMSCHSVR 5-37

5.26 TASK_ALTER 5-38

5.27 TASK_CREATE 5-39

5.28 TASK_DROP .. 5-40

5.29 XMLEXPORT 5-41
Constructing XMLEXPORT Arguments 5-42
Exporting XML Files ... 5-44

5.30 XMLIMPORT .. 5-49
Constructing XMLIMPORT Arguments 5-50
Importing XML Files ... 5-55

 1Contents

©Copyright 1995-2017 CASEMaker Inc. xiii

6 dmSQL Commands 6-1

6.1 CONNECT .. 6-2

6.2 CREATE DATABASE 6-5

6.3 DEF TABLE .. 6-13

6.4 DEF VIEW .. 6-14

6.5 DISCONNECT 6-15

6.6 EXPORT .. 6-16
EXPORT COMMAND INTERFACE 6-16
DESCRIPTION FILE .. 6-17

6.7 IMPORT ... 6-23
IMPORT COMMAND INTERFACE 6-23
DESCRIPTION FILE .. 6-24

6.8 LOAD ... 6-33
LOAD DB [DATABASE] ... 6-33
LOAD TABLE ... 6-34
LOAD SCHEMA .. 6-34
LOAD DATA .. 6-35
LOAD MODULE ... 6-35
LOAD PROJECT .. 6-35
LOAD PROC [PROCEDURE] .. 6-36

6.9 SET DUMP PLAN 6-37

6.10 START DATABASE 6-38

6.11 TERMINATE DATABASE 6-40

6.12 UNLOAD .. 6-41
UNLOAD DB [DATABASE] .. 6-43
UNLOAD TABLE .. 6-43
UNLOAD SCHEMA .. 6-43
UNLOAD DATA .. 6-44
UNLOAD PROJECT ... 6-44
UNLOAD MODULE .. 6-45

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. xiv

UNLOAD [PROC | PROCEDURE] ... 6-45
UNLOAD [PROC DEFINITION | PROCEDURE
DEFINITION] .. 6-45

1Introduction 1

©Copyright 1995-2017 CASEMaker Inc. 1-1

1 Introduction

Welcome to the DBMaker SQL Command and Function Reference manual.
DBMaker is a powerful and flexible SQL Database Management System (DBMS) that
supports an interactive Structured Query Language (SQL), a Microsoft Open

Database Connectivity (ODBC) compatible interface, and Embedded SQL for C
(ESQL/C). The unique open architecture and native ODBC interface adds the
freedom to build custom applications using a wide variety of programming tools, or to

query a database using ODBC-compliant applications.

DBMaker is easily scalable from personal single-user databases to distributed
enterprise-wide databases. Regardless of the configuration of a database, the advanced

security, integrity, and reliability features of DBMaker ensure the safety of critical
data. Extensive cross-platform support permits leveraging of existing hardware and
allows for expansion and upgrading when required.

DBMaker provides excellent multimedia-handling capabilities to store, search,
retrieve, and manipulate all types of multimedia data. Binary Large Objects (BLOBs)
ensure the integrity of multimedia data by taking full advantage of the advanced

security and crash recovery mechanisms included in DBMaker. File Objects (FOs)
manage multimedia data while maintaining the capability to edit individual files in
source applications.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 1-2

1.1 Additional Resources
DBMaker provides a complete set of DBMS manuals in addition to this one. Consult
one of the books listed below for more information on a particular subject.

 For an introduction to DBMaker's capabilities and functions, refer to the

DBMaker Tutorial.

 Please refer to the Database Administrator's Guide for more information on
designing, administering, and maintaining a DBMaker database.

 For more information on DBMaker management, refer to the JServer Manager
User's Guide.

 For more information on DBMaker configurations, refer to the JConfiguration
Tool Reference.

 For more information on DBMaker functions, refer to the JDBA Tool User's
Guide.

 For more information on the dmSQL interface tool, refer to the dmSQL User's
Guide.

 For more information on DCI COBOL Interfaces, refer to the DCI User's Guide.

 For more information on the ESQL/C programming, refer to the ESQL/C User's
Guide.

 For more information on the native ODBC API and JDBC API, refer to the

ODBC Programmer's Guide and JDBC Programmer's Guide.

 For more information on error and warning messages, refer to the Error and
Message Reference.

 For more information on the SQL stored procedure, refer to the DBMaker SQL
Stored Procedure User's Guide.

1Introduction 1

©Copyright 1995-2017 CASEMaker Inc. 1-3

1.2 Technical Support
CASEMaker provides thirty days of complimentary support via email and phone
during the evaluation period. When software is registered an additional thirty days of
support is included extending the total support period for software to sixty days.

However, CASEMaker continues to provide email support for bugs reported after the
complimentary support or registered support has expired (free of charge).

For most products, support is available beyond sixty days and may be purchased for

twenty percent of the retail price of the product. Please contact sales@casemaker.com
for details and prices.

CASEMaker support contact information, by post mail, phone, or email, for your area

is at: www.casemaker.com/support. We recommend searching the most current
database of FAQ's before contacting CASEMaker support staff.

Please have the following information available when phoning support for a

troubleshooting enquiry or include this information in your correspondence:

 Product name and version number

 Registration number

 Registered customer name and address

 Supplier/distributor where product was purchased

 Platform and computer system configuration

 Specific action(s) performed before error(s) occurred

 Error message and number, if any

 Any additional information deemed pertinent

mailto:sales@casemaker.com
http://www.casemaker.com/support

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 1-4

1.3 Document Conventions
This book uses a standard set of typographical conventions for clarity and ease of use.
The NOTE, Procedure, Example, and Command Line conventions also have a second
setting used with indentation.

Convention Description

Italics
Italics indicate placeholders for information that must be supplied,
such as user and table names. A word in italics should not be typed,
but replaced by the actual name. In addition, italics can be used to
introduce new words and are occasionally used for emphasis in text.

Boldface
Boldface indicates filenames, database names, table names, column
names, user names, and other database schema objects. It is also
used to emphasize menu commands in procedural steps.

KEYWORDS
All keywords used by the SQL language appear in uppercase when
used in normal paragraph text.

small caps
Small capital letters indicate keys on the keyboard. A plus sign (+)
between two key names indicates to hold down the first key while
pressing the second. A comma (,) between two key names indicates
to release the first key before pressing the second key.

NOTE Contains important information.

 Procedure

Indicates that procedural steps or sequential items will follow. Many
tasks are described using this format to provide a logical sequence of
steps for the user to follow.

 Example
Examples are given to clarify descriptions, and commonly include
text, as it will appear on the screen.

Command Line Indicates text, as it should appear on a text-delimited screen. This
format is commonly used to show input and output for dmSQL
commands or the content in the dmconfig.ini file.

Table 1-1 Document Conventions Table

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-1

2 SQL Basics

This manual is intended for anyone using the SQL language with DBMaker. This
includes everyone from, users performing ad-hoc queries using the dmSQL command

line utility, to programmers developing custom applications using ESQL/C and the
DBMaker ODBC-compliant interface.

This manual also provides a complete reference to the Structured Query Language

found in DBMaker, and provides the syntax for each SQL statement. Examples and
illustrations are provided throughout the manual to assist with more clarity of
understanding the contents.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-2

2.1 Syntax Diagrams
Syntax diagrams demonstrate the syntax for all SQL commands. These diagrams
provide assistance when constructing a statement on the command line. To use the

syntax diagram, simply follow the line(s) and arrows from start to finish. Any elements
of the command that cannot be navigated around are required. Any elements that can
be navigated around are optional, but provide additional options and/or flexibility.

Any words that appear in italics are placeholders for the actual names used in a
database. Substitute the actual names for these placeholders. In the diagram, replace
the table_name placeholder with the name of a table in the database. For example, in

the tutorial database, you could replace the table_name placeholder with Customers to
execute this command on the Customers table.

Sometimes it is possible to have a list of items in a command, which are shown in the

syntax diagram as a circular path. The column name field can include a list of column
names, separated by commas, as indicated by the circular path following the arrows.

column_name

,

ALTER TABLE table_name DROP CASCADE

RESTRICT

()

Figure 2-1: A sample syntax diagram

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-3

2.2 Data Types
When defining a column in a table, choose a data type for the field. Understand how
to use each field in order to make the right choice of data type. Choosing the wrong

data type can waste space in the database, or make the application program take extra
steps to convert the data into a usable form.

DBMaker supports the following data types:

BIGINT, BINARY(size), BIGSERIAL, CHAR(size), NCHAR(size), DATE,
DECIMAL(NUMERIC), DOUBLE, FILE, FLOAT, INTEGER, JSONCOLS,
LONG VARBINARY(BLOB), LONG VARCHAR(CLOB), REAL, OID,

SERIAL(start), SMALLINT, TIME, TIMESTAMP, VARCHAR(size),
NVARCHAR(size) and Media types.

BIGINT

BIGINT data type is an exact signed numeric data type with a precision of nineteen

and a scale of zero. The BIGINT data type uses 8 bytes of storage with a maximum
value of 9,223,372,036,854,775,807 and a minimum value of
−9,223,372,036,854,775,808.

Using BIGINT or INTEGER to move a value larger than the maximum allowed by
those data types results in a conversion error and and the data is not moved.

 Example 1
37654

 Example 2
857823

BIGSERIAL(start)

DBMaker uses the BIGSERIAL data type when for allocating consecutive integers to
uniquely identify each table contained in a database. DBMaker manages these
integers internally. The value of each integer is automatically increased by one each

time it is used.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-4

When defining a BIGSERIAL column, providing an integer value for the optional
START parameter specifies the first value in a number sequence. A default value of 1

is used when the START parameter is omitted. Each table may contain one column
with the BIGSERIAL data type.

An integer is used to generate BIGSERIAL numbers. The integer is an exact signed

numeric data type occupying 8 bytes of storage with a precision of 19 and a scale of 0.
The BIGSERIAL data type has a maximum value of 9,223,372,036,854,775,806 and
a minimum value of −9,223,372,036,854,775,808.

A sequential number can be inserted into a BIGSERIAL column by place a NULL or
empty value in the BIGSERIAL column when inserting a new row. DBMaker inserts
the sequential number for that table into the BIGSERIAL column of the new record

and increases the internal value by one.

When inserting a new column, if an integer is supplied for BIGSERIAL, instead of a
NULL or empty value, DBMaker uses the integer instead of the next sequential

number. Additionally, the internal value is not incremented by 1. If the supplied
integer value is greater than the last sequential number generated, DBMaker resets the
sequence of generated sequential numbers to start with the supplied integer.

 Example 1
10000, 10001, 10002, 10003, 10004, 10005, 10006, 10007

 Example 2
10000, 10001, 5000, 10002, 10003, 11000, 11001, 11002

BINARY (size)

The BINARY data type is a fixed-length data type that can contain any binary value.
BINARY columns maximum length can be specified as 4 KB, 8 KB, 16 KB or 32 KB,

User can enter a value for the size parameter when creating a BINARY column. Any
data entered in a BINARY column shorter than the column length is padded with a
zero-value byte. By default, the minimum length of BINARY columns is 1 byte and

the maximum length is 8056 bytes.

Enter character data by enclosing the data in single quotes (' '), the same as when
entering CHAR data. However, in BINARY columns the data is stored as

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-5

hexadecimal values representing the ASCII code of the characters, not as the actual
characters entered.

Alternatively, enter hexadecimal values directly by enclosing them in single quotes and
appending the 'x' character (' 'x) to indicate the string contains a hexadecimal value. It
requires two digits to represent all possible values for each byte in hexadecimal; use an

even number of digits when entering values.

 Example 1
'AaBbCcDdEe'x

 Example 2
'41614262436344644565'x

CHAR (size)

The CHAR data type is a fixed-length data type that can contain any character from

the keyboard. CHAR columns maximum length can be specified as 4 KB, 8 KB, 16
KB or 32 KB, User can enter a value for the size parameter when creating a CHAR
column. By default, the minimum length of CHAR columns is 1 byte and the

maximum length is 8056 bytes.

Any CHAR data in a column that is shorter than the column length is padded with
spaces. When entering CHAR data, enclose it in single quotes (' '). Double-byte

characters occupy two bytes. If using double-byte characters, account for this when
specifying the length of the column.

 Example 1
'This is a CHAR string.'

 Example 2
'This is another CHAR string.'

DATE

There are two types of DATE data; DATE literal and DATE constant. Date literal
represents the present date. DATE constant is a set point in time. The DATE data

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-6

type is fixed-length containing the calendar date (year, month and day). The DATE
data type uses 4 bytes of storage. Valid values for the year are from 0001 to 9999.

The DATE data type has multiple input/output formats. If the values in the database
do not appear correctly, or you are not able to enter dates you think are valid, check
the date input/output formats to ensure that they are correct.

 Example 1a
'0001/01/01'

 Example 1b
'0001/01/01'd

 Example 1c
DATE '0001/01/01'

 Example 2a
'1999/12/31'

 Example 2b
'1999/12/31'd

 Example 2c
DATE '1999/12/31'

DECIMAL (NUMERIC)

The DECIMAL data type is an exact signed numeric value with a variable precision
and scale. Precision refers to the total number of digits in the mantissa, both to the left
and to the right of the decimal point. The default value for precision is 17 with a

maximum value of 38. Scale refers to the number of digits to the right of the decimal
point. The default value for scale is 6.

The amount of storage used by a DECIMAL column is based on the actual value

entered, not on the default precision and scale values or the precision and scale values
entered when defining the column.

To calculate the amount of storage, use the following formula:

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-7

2
2

1
 bytes of # +

+
=

p

For example, the number 9283.83 would be stored as 6 bytes.

The actual calculation used is:

5.5

2
2

16

2
2

1
 bytes of #

=

+
+

=

+
+

=
p

If you attempt to move a value larger than the allowed maximum from a data type

such as FLOAT or DOUBLE, DBMaker displays a conversion error and does not
move the data. The DECIMAL data type may be abbreviated as DEC.

 Example 1
3452.8373645

 Example 2
736.383732652

DOUBLE

The DOUBLE data type is an approximate signed numeric data type with a mantissa
of precision 15. Precision refers to the total number of digits in the mantissa, both to
the left and to the right of the decimal point. The DOUBLE data type uses 8 bytes of

storage and has a valid input range from 1.0E308 to –1.0E308.

The smallest valid input values are 1.0E-308 and –1.0E-308.

 Example 1
2.89837457884451E285

 Example 2
-1.93873634847372E-174

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-8

FILE

The FILE data type is a structured data type that occupies 48 bytes of storage. This
data type is similar to the CLOB and BLOB data types and stores the contents of any
existing file as an external file that DBMaker can reference the same as any other data.

DBMaker stores the data externally as a file instead of internally as an object. This
allows third-party tools to access and manipulate the data in its native format, without
having to re-import the data to register any changes in the database. A file object has a

maximum path length of 255 characters.

The FILE column stores a reference to a record in the system catalog tables. The
database uses system catalog information to find the file object. When you display a

FILE column, you do not actually see what is stored in the FILE column itself.
Instead, DBMaker shows one of three views of information stored in the system
catalog or the file itself the filename, the file size, or the file contents.

The FILE data type can store data in two ways, as a system file object or as a user file
object. A system file object copies an existing file to the file object directory of the
database and gives it a unique name. The database manages this file, and deletes it

when there are no references to it in the database. A user file object creates a link to an
existing file, while leaving the file in the original location with the original name.
Since, the user created this file; it will not be deleted when there are no references

made to it in the database. DBMaker must have the read permission on a file before
you can insert it into the database as a user file object.

When multiple records reference the same file, DBMaker will store only a single copy

of the file and share it between records to save disk space. However, from the user's
point of view, there is always a dedicated file for each record. DBMaker transparently
generates a new file when updating a shared file. Other records sharing that file are

not changed, and other users still see the original file. This prevents changes made to a
record in one file from influencing other records.

FLOAT

The FLOAT data type is an approximate signed numeric data type having a mantissa

with a precision of 15. Precision refers to the total number of digits to the left and to

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-9

the right of the decimal point. The default FLOAT data type uses 8 bytes of storage
and has a valid input range from 1.0E308 to –1.0E308. The default FLOAT type can

be specified as REAL or DOUBLE with the keyword DB_FltDb.

The smallest valid input values are 1.0E-308 and –1.0E-308.

 Example 1
2.89837457884451E285

 Example 2
-1.93873634847372E-174

INTEGER

The INTEGER data type is an exact signed numeric data type with a precision of 10
and a scale of 0. The INTEGER data type uses 4 bytes of storage and has a maximum
value of 2,147,483,647 and a minimum value of -2,147,483,648.

If you attempt to move a value larger than the allowed maximum from a data type
such as DOUBLE, DBMaker displays a conversion error and does not move the data.
The INTEGER data type may be abbreviated as INT.

 Example 1
393848

 Example 2
-298376

JSONCOLS

JSONCOLS Type is a column set of dynamic columns. DBMaker supports dynamic
columns. A dynamic column does not exist in the table definition, and it's the keys

which can be derived from the JSON string and can be used only when a table has
declared a column as JSONCOLS column. For details of a dynamic column, please
refer to chapter Using Dynamic Columns in Database Administrator's Guide. For details

of a JSONCOLS column, please refer to chapter Using JSONCOLS Type in Database
Administrator's Guide. Dynamic columns of a table are stored as JSONCOLS type
which is derived from LONG VARBINARY.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-10

 Example 1

Creating a table that has JSONCOLS type:
dmSQL> CREATE TABLE student(name CHAR(30), info JSONCOLS);

or
dmSQL> CREATE TABLE student(name CHAR(30));
dmSQL> ALTER TABLE student ADD COLUMN info JSONCOLS;

Inserting data into table student by using the name of the JSONCOLS type:
dmSQL> INSERT INTO student(name,info) VALUES
('jessia','{"desk_id":3,"birthday":"1986-09-19","score":90}');
1 rows inserted
dmSQL> INSERT INTO student(name,info) VALUES
('pine','{"desk_id":4,"birthday":"1987-03-03","score":95}');
1 rows inserted

Query table student by using "SELECT *":
dmSQL> SET blobwidth 80;
dmSQL> SELECT * FROM student;
 NAME INFO
================== ==

jessia {"score":90,"birthday":"1986-09-19","desk_id":3}
pine {"score":95,"birthday":"1987-03-03","desk_id":4}
2 rows selected

Query table student by using the name of the JSONCOLS type:
dmSQL> SELECT name, info FROM student;
 NAME INFO
================== ==

jessia {"score":90,"birthday":"1986-09-19","desk_id":3}
pine {"score":95,"birthday":"1987-03-03","desk_id":4}
2 rows selected

Updating data of table student by using the name of the JSONCOLS type:
dmSQL> UPDATE student SET info = '{"desk_id":7, "birthday":"1986-09-
19","score":88}' WHERE name='jessia';
1 rows updated

Modifying data type of the column named birthday to DATE:

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-11

dmSQL> ALTER TABLE student ADD DYNAMIC COLUMN birthday DATE;
dmSQL> SELECT info FROM student;
 INFO
===

{"score":88,"birthday":"1986-09-19","desk_id":7}
{"score":95,"birthday":"1987-03-03","desk_id":4}
2 rows selected
dmSQL> INSERT INTO student(name,desk_id,birthday,score) VALUES ('mike','8','1985-
02-15','92');
dmSQL> SELECT info FROM student;
 INFO
===

{"score":88,"birthday":"1986-09-19","desk_id":7}
{"score":95,"birthday":"1987-03-03","desk_id":4}
{"BIRTHDAY":477244800000,"DESK_ID":"8","SCORE":"92"}
3 rows selected

Creating a text index on the JSONCOLS column named info:
dmSQL> CREATE TEXT INDEX idx_stu ON student(INFO);

Creating a view on the JSONCOLS column named info:
dmSQL> CREATE VIEW view1 AS SELECT info FROM student;
dmSQL> SELECT * FROM view1;
 INFO
===

{"score":88,"birthday":"1986-09-19","desk_id":7}
{"score":95,"birthday":"1987-03-03","desk_id":4}
{"BIRTHDAY":477244800000,"DESK_ID":"8","SCORE":"92"}
3 rows selected

 Example 2

The following operations base on table student. For details of table student, please

refer to Example 1.

Inserting data into table student by using the names of the dynamic columns:
/* implicit data conversion is closed by default */
dmSQL> INSERT INTO student(name,score) VALUES(?,?);

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-12

dmSQL/Val> 'demi','85'; /* it is ok */
1 rows inserted
dmSQL/Val> 'finly',82; /* INT cannot be converted to CHAR */
ERROR (9629): value list syntax error
dmSQL/Val> END;
dmSQL> SET itcmd ON;
dmSQL> INSERT INTO student (name,score) VALUES(?,?);
dmSQL/Val> 'finly',82; /* using implicit data conversion */
1 rows inserted
dmSQL/Val> END;
dmSQL> SET itcmd OFF;
dmSQL> INSERT INTO student(name,desk_id,birthday,score) VALUES('linda','1','1982-
01-01','91');
1 rows inserted
dmSQL> INSERT INTO student(name,desk_id,birthday,score) VALUES('glow','2','1984-
03-25','93');
1 rows inserted
dmSQL> INSERT INTO student (name,desk_id,birthday,score)
VALUES('kitty','abc','1980-02-27','97');
1 rows inserted

Query table student by using "SELECT *":
dmSQL> SELECT * FROM student;
 NAME INFO
============== ==

jessia {"score":88,"birthday":"1986-09-19","desk_id":7}
pine {"score":95,"birthday":"1987-03-03","desk id":4}
mike {"BIRTHDAY":477244800000,"DESK_ID":"8","SCORE":"92"}
demi {"SCORE":"85"}
finly {"SCORE":"82"}
linda {"BIRTHDAY":378662400000,"DESK_ID":"1","SCORE":"91"}
glow {"BIRTHDAY":448992000000,"DESK_ID":"2","SCORE":"93"}
kitty {"BIRTHDAY":320428800000,"DESK_ID":"abc","SCORE":"97"}
8 rows selected

Query table student by using the names of the dynamic columns:
dmSQL> SELECT name, desk_id, birthday, score FROM student;
 NAME DESK_ID BIRTHDAY SCORE
============== =========== ============ ======================

_

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-13

jessia 7 19* 88
pine 4 19* 95
mike 8 19* 92
demi NULL NU* 85
finly NULL NU* 82
linda 1 19* 91
glow 2 19* 93
kitty abc 19* 97
8 rows selected

Updating/deleting data of table student by using the names of the dynamic columns:
dmSQL> UPDATE student SET score='88' WHERE name='linda';
1 rows updated
dmSQL> DELETE FROM student WHERE desk_id='2';
1 rows deleted

Adding description of dynamic columns to this table:
dmSQL> ALTER TABLE student ADD DYNAMIC COLUMN desk_id INT;
dmSQL> ALTER TABLE student ADD DYNAMIC COLUMN score DOUBLE;

Inserting data into table student:
dmSQL> INSERT INTO student(name, desk_id, age, score) VALUES('jane','12','1982-
05-07',96);
ERROR (6150): [DBMaker] the insert/update value type is incompatible with column
data type or compare/operand value is incompatible with column data type in
expression/predicate
dmSQL> INSERT INTO student(name, desk_id, age, score) VALUES('jim',8,'1984-09-
26',98);
1 rows inserted
dmSQL> SELECT name, desk_id, birthday, score FROM student;
 NAME DESK_ID BIRTHDAY SCORE
============== ============ ============ ======================
jessia 7 1986-09-19 8.80000000000000e+001
pine 4 1987-03-03 9.50000000000000e+001
mike 8 1985-02-15 9.20000000000000e+001
demi NULL NULL 8.50000000000000e+001
finly NULL NULL 8.20000000000000e+001
linda 1 1982-01-01 8.80000000000000e+001
kitty NULL 1980-02-27 9.70000000000000e+001
jim 8 NULL 9.80000000000000e+001
8 rows selected

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-14

Modifying the data type of the dynamic column named score:
dmSQL> ALTER TABLE student MODIFY DYNAMIC COLUMN score TYPE TO INT;

Creating an index on the dynamic column named desk_id:
dmSQL> CREATE INDEX idx1 ON student(desk_id);

Dropping description information of the dynamic column named birthday:
dmSQL> ALTER TABLE student DROP DYNAMIC COLUMN birthday;

LONG VARBINARY (BLOB)

The BLOB data type is a variable-length data type that can contain any binary value.
The maximum length of BLOB columns is 8 TB. Unlike the BINARY data type,

which uses zero-value bytes for padding, only the bytes entered are stored in the
database.

You can enter character data by enclosing the data in single quotes (' '), the same as

when entering CHAR data. However, in BLOB columns the data is stored as
hexadecimal values representing the ASCII code of the characters, not as the actual
characters entered.

Alternately, enter hexadecimal values directly by enclosing the data in single quotes
and appending the 'x' character (' 'x) to indicate a string containing a hexadecimal
value. Two digits represent all possible values for each byte in hexadecimal; use an

even number of digits when entering values.

 Example 1
'AaBbCcDdEe'x

 Example 2
 '41614262436344644565'x

LONG VARCHAR (CLOB)

The variable-length CLOB data type can contain any character that can be entered

from the keyboard. The maximum length of CLOB columns is 8 TB .

Unlike the CHAR data type, which uses spaces for padding, only the characters
entered are stored in the database. When entering data in a CLOB column, enclose it

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-15

in single quotes (' '). Double-byte characters occupy two bytes each, account for this
when specifying the length of the column.

 Example 1
'This is a varchar string.'

 Example 2
'This is another varchar string.'

NCHAR (size)

The NCHAR data type is a fixed-length data type that can contain any Unicode
character. Each Unicode character occupies two bytes of storage in UTF16 Little-

Endian (LE) encoding. The (size) parameter determines the number of 2 byte
characters in the column. The (size) parameter must be entered when creating an
NCHAR column, and may range from 1 to 4028 by default.

If NCHAR data is entered into a column that is shorter than the column length, the
data will be padded with spaces. When entering NCHAR data, enclose the Unicode
character with single quotes and prefix the quotes with 'N'.

 Example 1

The following demonstrates the syntax of a Unicode data entry:
N'Unicode Data'

If NCHAR data is input in hexadecimal format, enclose the hexadecimal string with
quotes and append a 'u' character.

 Example 2

The following demonstrates the syntax of a three-character hexadecimal Unicode data
entry:
'610a620b63f1'u

When a character string is input to a Unicode column but is not prefixed by 'N', then
it will automatically be converted from local code to Unicode. If Unicode characters
are entered into a regular CHAR type column, then the Unicode character will be

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-16

converted to the local code defined by the dmconfig.ini parameter DB_LCode.
Characters that are not defined in the local code are represented by .

Synonyms for the NCHAR data type include NATIONAL CHAR(size), and
NATIONAL CHARACTER(size).

NVARCHAR (size)

The NVARCHAR data type is a variable-length data type that can contain any

Unicode character. Each Unicode character occupies two bytes of storage in UTF16
Little-Endian (LE) encoding. The (size) parameter determines the number of 2 byte
characters in the column. The (size) parameter must be entered when creating an

NVARCHAR column, and may range from 1 to 4028 by default.

If NVARCHAR data is entered into a column that is shorter than the column length,
the data is not padded with spaces. When entering NVARCHAR data, enclose the

Unicode character with single quotes and prefix the quotes with 'N'.

 Example 1

The following demonstrates the syntax of a Unicode data entry:
N'Unicode Data'

If NVARCHAR data is input in hexadecimal format, enclose the hexadecimal string
with quotes and append a 'u' character.

 Example 2

The following demonstrates the syntax of a three-character hexadecimal Unicode data

entry:
'610a620b63f1'u

When a character string is input to a Unicode column but is not prefixed by 'N', then
it will automatically be converted from local code to Unicode. If Unicode characters

are entered into a regular VARCHAR type column, then the Unicode character will
be converted to the local code defined by the dmconfig.ini parameter DB_LCode.
Characters that are not defined in the local code are represented by .

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-17

Synonyms for the NVARCHAR data type include NATIONAL CHAR
VARYING(size), NCHAR VARYING(size), NATIONAL VARCHAR(size), and

NATIONAL CHARACTER VARYING(size).

OID

The OID (object identifier) data type is a special data type that provides a unique ID
for each object, record or BLOB, stored in a database. A structured data type has a

precision of 10 and a scale of 0, and occupies 16 bytes of storage. DBMaker
automatically generates and inserts an OID with each record. The OID is internally
managed and maintained by DBMaker and cannot be used directly.

The value generated for an OID is related to the storage location of objects in the
database. This means that two OIDs generated consecutively may not necessarily be
sequential.

The OID values act as a hidden pseudo-column in tables, and will not appear in
queries such as SELECT * FROM CUSTOMERS. Explicitly select the OID column
by using 'OID' as a column name in a query.

Although it is possible to use an OID in a query to select data from a table and then
use the OIDs to update the table data, this is not common practice when using the
SQL language. OIDs are usually used in the internal programming interface, and not

directly in the interactive dmSQL environments.

REAL

The REAL data type is an approximate signed numeric data type having a mantissa
with a precision of 7. Precision refers to the total number of digits to the left and to

the right of the decimal point. The REAL data type uses 4 bytes of storage and has a
valid input range from 3.402823466E38 to –3.402823466E38. The smallest valid
input values are 1.175494351E-38 and –1.175494351E-38. A move involving a value

larger than the allowed maximum, from a data type such as DOUBLE, fails and
DBMaker displays a conversion error.

 Example 1
3.583837E34

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-18

 Example 2
-1.873653E-21

SERIAL (start)

The SERIAL data type is a special data type that provides a sequence of consecutive
values. DBMaker allocates an integer number for each table contained in a database

and uses those numbers to generate a unique sequence for the corresponding table.
DBMaker manages and maintains these integer numbers internally. The value of each
integer value is automatically increased by one each time it is used.

Providing an integer value for the optional START parameter when defining a
SERIAL column can specify the first value in a number sequence, or the START
parameter omitted to use the default value of 1. Each table in a database can have only

one column with the SERIAL data type.

The internal value used to generate a SERIAL number is actually an integer value; the
SERIAL data type shares all of the properties of the INTEGER data type. It is an

exact signed numeric data type with a precision of 10 and a scale of 0, which occupies
4 bytes of storage. The SERIAL data type also has the same range of values as the
INTEGER data type, with a maximum value of 2,147,483,646 and a minimum value

of –2,147,483,648.

Place a NULL, or empty value in the SERIAL column when inserting a new row to
insert a sequential number into a SERIAL column. DBMaker will insert the

sequential number for that table into the SERIAL column of the new record, and
automatically increase the internal value by one.

If inserting a new column, and supplying an integer value for the SERIAL instead of a

NULL or empty value, DBMaker will use the supplied integer value instead of the
next sequential number; the internal value will not be incremented by 1. If the
supplied integer value is greater than the last sequential number generated, DBMaker
will reset the sequence of generated sequential numbers to start with the supplied
integer value.

 Example 1
100, 101, 102, 103, 104, 105, 106, 107

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-19

 Example 2
100, 101, 50, 102, 103, 110, 111, 112

SMALLINT

The SMALLINT data type is an exact signed numeric data type with a precision of
five and a scale of zero. The SMALLINT data type uses two bytes of storage and has a

maximum value of 32,767 and a minimum value of -32,768.

If attempting to move a value larger than the permitted maximum value from a data
type such as INTEGER or DOUBLE, DBMaker displays a conversion error and does

not move the data.

 Example 1
4769

 Example 2
8376

TIME

There are two types of TIME data, TIME literal, and TIME constant. A TIME literal

displays the present time, which is an ever-changing value. A TIME constant is a fixed
moment in time. Both TIME data type settings are fixed-lengths, and use 4 bytes of
storage. All time values are entered in twenty-four hour format by default unless the

optional 'AM' or 'PM' values are specified.

Both TIME data types have multiple input/output formats. If the values in the
database do not appear correctly or you are unable to enter perceived valid times then,

check the time input/output formats for validity.

 Example 1a
'22:04:05'

 Example 1b
'22:04:05't

 Example 1c
TIME '22:04:05'

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-20

 Example 2a
'10:04:05 PM'

 Example 2b
10:04:05 PM't

 Example 2c
TIME 10:04:05 PM'

TIMESTAMP

There are two types of TIMESTAMP, TIMESTAMP literal, and TIMESTAMP

constant. A TIMESTAMP literal displays the present time, which is an ever-changing
value. A TIMESTAMP constant is a fixed moment in time.

Both TIMESTAMP data type settings are a fixed-length data type that contains

calendar data and the time-of-day. Both TIMESTAMP data type settings use 11 bytes
of storage, has a precision of 17, and a scale of 10. Valid years range from 0001 to
9999. All time values are entered in twenty-four hour format by default unless the

optional 'AM' or 'PM' values are specified.

Both TIMESTAMP data type settings use the input and output formats for the
TIME and DATE data types to display values and determine if input values are valid.

If the values in the database do not appear correctly or you are unable to enter
perceived valid times then, verify the time input and output formats.

 Example 1a
'1997/01/01 10:02:03'

 Example 1b
'1997/01/01 22:02:03'ts

 Example 1c
TIMESTAMP '1997/01/01 10:02:03'

 Example 2a
'01.01.1997 22:02:03'

 Example 2b
'01.01.1997 22:02:03'ts

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-21

 Example 2c
TIMESTAMP '01.01.1997 22:02:03'

VARCHAR (size)

The VARCHAR data type is a variable-length data type that can contain any
character that can be entered from the keyboard. VARCHAR maximum columns

length can be specified as 4 KB, 8 KB, 16 KB or 32 KB, User can enter a value for the
size parameter when creating a VARCHAR column. By default, the minimum length
of VARCHAR columns is 1 byte and the maximum length is 8056 bytes.

Only the VARCHAR characters entered are stored in the database. When entering
data in a column, use single quotes (' '). If using double-byte characters, account for
two bytes for each character when specifying the length of a column.

 Example 1
' This is a VARCHAR string.'

 Example 2
' This is another VARCHAR string.'

Media Types

Large object columns may also be specified as media types to aid in media process
functions such as full text search for Microsoft Word documents. The following

media types are available: MsWordType, HtmlType, XmlType, MsPPTType,
MsExcelType, PDFType, MsWordFileType, HtmlFileType, XmlFileType,
MsPPTFileType, MsExcelFileType, and PDFFileType.

Media types are domains of existing data types; MsWordType, MsPPTType,
MsExcelType, PDFType, HtmlType, and XmlType are derived from LONG
VARBINARY, and MsWordFileType, HtmlFileType, XmlFileType,

MsPPTFileType, MsExcelFileType, and PDFFileType are derived from FILE type
columns. This is important to consider if you choose to use the ALTER TABLE
function to change a column from one data type to another. The characteristics of

each of the media types are similar to the characteristics of the data type from which it
is derived.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-22

The features of XMLTYPE include:

• Well-formed XML checking: inserted/updated xml content must be well-formed

• XML validation: optionally specify a validation udf when creating an xmltype
column and DBMaker will validate the xml content with it

• XML data is stored in the original format

• Query with XPath search: optionally specify an xpath and use extract functions to
query/locate nodes in an XML data

• Update XML content specified by XPath

• Build index on XPath extract: speed up xpath querieswith indexes on frequent
query xpath expression

• Altering an xmltype column or other data types to the xmltype is not allowed

 Example
dmSQL> CREATE TABLE minutes (id INT, meeting_date DATE, doc MSWORDFILETYPE);
dmSQL> INSERT INTO minutes VALUES (1, 3/3/2003, 'c:\meeting\20030303.doc');

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-23

2.3 Data Conversion
Data types will be converted in the following scenarios:

 When data from one object is moved to, compared with, or combined with data

from another object, the data may have to be converted from the data type of one
object to the data type of the other.

 When data from a SQL result column, return code, or output parameter is

moved into a program variable, the data must be converted from the DBMaker
system data type to the data type of the variable.

 When an expression contains data of different datatypes, there is a need for data

conversion to make data compatible.

DBMaker supports both implicit and explicit conversion of data from one datatype to
another.

It is recommended that users specify explicit conversions, rather than rely on implicit
or automatic conversions. The reasons are as follows:

 SQL statements are easier to understand when you use explicit datatype

conversion functions.

 Implicit datatype conversion can have a negative impact on performance,
especially if the datatype of a column value is converted to that of a constant

rather than the other way around.

 Implicit conversion depends on the context in which it occurs and may not work
the same way in every case.

Explicit Data Conversion

Users can explicitly specify datatype conversions using the following SQL conversion
functions: CAST, DATETOSTR, TIMETOSTR, TIMESTAMPTOSTR and
TO_DATE.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-24

CAST allows the output data to be converted to another data type. For details please
refer to Chapter 3.85, SELECT.

The DATETOSTR function is used to convert a value in DATE type into the
character string in specified format. For details please refer to Chapter 4.2.3,
DATETOSTR.

The TIMETOSTR function is used to convert a value in TIME type into the
character string with specified format. For details please refer to Chapter 4.2.4,
TIMETOSTR.

The TIMESTAMPTOSTR function is used to convert a value in TIMESTAMP type
into the character string in specified format. For details please refer to Chapter 4.2.5,
TIMESTAMPTOSTR.

The TO_DATE function converts a selected character string to a value in DATE
type. For details please refer to Chapter 4.2.6, TO_DATE.

Implicit Data Conversion

DBMaker automatically converts a value from one datatype to another when such a

conversion makes sense. It mainly contains conversion between numeric data and
character data. A numeric data and a character data both include data of multiple
types. A numeric data's type can be integer (int, serial), smallint, bigint, bigserial,

float, double, and decimal. A character data's type can be char, varchar, nchar and
nvarchar. Before using implicit data conversion, users should open this function by
using "set itcmd on" or set value of DB_ItcMd to 1.

The table 2-1 illustrates all valid conversions, and the direction of the conversion is
from row X to column Y.

Xy int

(serial)
small-

int
bigint

(bigserial)
decimal double float (var)

char
n(var)
char

int(serial) Y Y Y Y Y Y Y Y
smallint Y Y Y Y Y Y Y Y
bigint(bigserial) Y Y Y Y Y Y Y Y
decimal Y Y Y Y Y Y Y Y
double Y Y Y Y Y Y Y Y
float Y Y Y Y Y Y Y Y

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-25

(var)char Y Y Y Y Y Y Y Y
n(var)char Y Y Y Y Y Y Y Y

Table 2-1 Implicit Conversion Table

The following rules govern the direction in which DBMaker makes implicit datatype
conversion:

 During INSERT operations, DBMaker converts the value to the datatype of the

affected column.

 During arithmetic operations (arithmetic operators: +, -, *, /), DBMaker converts
the character data to a numeric data.

a) When only one side of an operator is character data and the other side is
numeric data, DBMaker converts this character data to a numeric data of the
same type with the numeric data on the other side.

b) When the both side of an operator are character data, if meanwhile the
character data both are constant character data, DBMaker converts the
character data to a value of proper type, for example, in expression

'123'+'123.456'+'1.23e45', '123', '123.456' and '1.23e45' will be converted
to 123 (int type), 123.456 (decimal type), and 1.23e45 (double type)
separately, otherwise, DBMaker converts the character data to a DOUBLE

value.

 During comparison operations (comparison operators: >, >=, =, <=, <, !=, <>, IN,
IS NULL), DBMaker converts the value on the right side of the operator to a

value of the same type with the value on the left side.

 During concatenation operations (concatenation operators: ||, CONCAT),
DBMaker converts the numeric data to a character data.

Please note that DBMaker also can implicitly convert the argument of a UDF and a
default value.

 Example 1

In the following statement, DBMaker implicitly converts a char(varchar) value to a int
value.
dmSQL> set itcmd on;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-26

dmSQL> create table t1 (c1 int);
dmSQL> insert into t1 values ('123');
dmSQL> select * from t1 where c1 = '123';
dmSQL> update t1 set c1='456'+111;
dmSQL> delete from t1 where c1 = '678'-111;

 Example 2

In the following statement, DBMaker implicitly converts a decimal value to a
nchar(nvarchar) value.
dmSQL> create table t2 (c1 nchar(20), c2 nvarchar(20));
dmSQL> insert into t2 values (12345.6789, 222.222);
dmSQL> select * from t2 where c1 = 12345.6789 and c2 = 222.222;
dmSQL> update t2 set c1 = -6789.12345;

 Example 3

In the following statement, DBMaker implicitly converts the argument of a UDF.
dmSQL> create table t1 (c1 int, c2 char(10), c3 nchar(10));
dmSQL> insert into t1 values(abs('-10'), -abs(-10), abs(10));
dmSQL> select * from t1;
 C1 C2 C3
=========== ========== =======================================
 10 -10 3100300000000000000000000000000000000000
1 rows selected

dmSQL> select * from t1 where abs(c1) = abs(c2);
 C1 C2 C3
=========== ========== ==
 10 -10 3100300000000000000000000000000000000000
1 rows selected

dmSQL> select * from t1 where abs(c1) = abs(c3);
 C1 C2 C3
=========== ========== ==
 10 -10 3100300000000000000000000000000000000000
1 rows selected

dmSQL> select abs(c1), abs(c2), abs(c3) from t1;
 ABS(C1) ABS(C2) ABS(C3)
======================= ====================== ===================

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-27

1.00000000000000e+001 1.00000000000000e+001 1.00000000000000e+001
1 rows selected

dmSQL> select concat(c1,c2), concat(c1,-123), concat(1.234e8, c1) from t1;
 CONCAT(C1,C2) CONCAT(C1,-123) CONCAT(1.234E8, C1)
====================== ==================== ======================
10-10 10-123 12340000010
1 rows selected

 Example 4

In the following statement, DBMaker implicitly converts the default value.
dmSQL> create table t1 (c1 int default '123456');
dmSQL> insert into t1 values(default);
1 rows inserted
dmSQL> select * from t1;
 C1
===========

123456
1 rows selected

dmSQL> create table t1 (c1 char(20) default 123456);
dmSQL> insert into t1 values(default);
1 rows inserted
dmSQL> select * from t1;
 C1
============

123456
1 rows selected

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-28

2.4 RESERVED WORDS
The following list of keywords should not be used as identifiers. DBMaker returns the
ERR_RESERVED_WORD error message and does not perform the desired

command when the following reserved words are used as keywords.

ABSOLUTE | ACTION | ADD | ADMIN | AFTER | AGGREGATE | ALIAS |
ALLOCATE | ALTER | AND | ANY | ARE | ARRAY | AS | ASC | ASSERTION |

ASENSITIVE | AT | AUTHORIZATION | BEFORE | BEGIN | BIGINT |
BIGSERIAL | BINARY | BIT | BLOB | BOOLEAN | BOTH | BREADTH | BREAK
| BY | CALL | CASCADE | CASCADED | CASE | CAST | CATALOG |CHAR |

CHECK | CLASS | CLOB | CLOSE | COLLATE | COLLATION | COLUMN |
COMMIT | COMPLETION| CONDITION | CONNECT | CONT |
CONNECTION | CONSTRAINT | CONSTRAINTS | CONSTRUCTOR |

CONTINUE | CORRESPONDING | CREATE | CROSS | CUBE | CURRENT |
CURRENT_DATE | CURRENT_PATH | CURRENT_ROLE |
CURRENT_TIME | CURRENT_TIMESTAMP | CURRENT_USER | CURSOR |

CYCLE| DATE | DAY | DEALLOCATE | DEC | DECIMAL | DECLARE |
DEFAULT | DEFERRABLE | DEFERRED | DELETE | DEPTH | DEREF | DESC
| DESCRIBE | DESCRIPTOR | DESTROY| DESTRUCTOR | DETERMINISTIC

| DICTIONARY | DIAGNOSTICS | DISCONNECT | DISTINCT |DO
|DOMAIN | DOUBLE | DROP | DYNAMIC | EACH | ELSE | ELSEIF | END |
END-EXEC | EQUALS | ESCAPE | EVERY | EXCEPT| EXCEPTION | EXEC |

EXECUTE | EXIT | EXTERNAL | FALSE | FETCH | FIRST | FLOAT | FOR |
FOREIGN | FOUND | FROM| FREE | FULL | FUNCTION | GENERAL | GET |
GLOBAL | GO | GOTO | GRANT | GROUP | GROUPING | HANDLER |

HAVING | HOLD | HOST | IDENTITY | IF | IGNORE | IMMEDIATE | IN |
INDICATOR | INITIALIZE | INITIALLY | INNER | INOUT | INPUT |
INSENSITIVE | INT | INTEGER | INTERSECT | INTO | IS | ISOLATION |

ITERATE | JOIN | KEY | LANGUAGE | LANGUAGE SQL | LARGE | LAST |
LATERAL | LEADING | LEAVE | LESS | LEVEL | LIKE | LIMIT | LOCAL |
LOCALTIME | LOCALTIMESTAMP | LOCATOR | LOOP | MAP | MATCH |

MODIFIES | MODIFY | MODULE | NAMES | NATIONAL | NATURAL |
NCHAR | NCLOB | NEXT | NO | NONE | NOT | NULL | NUMERIC |

1SQL Basics 2

©Copyright 1995-2017 CASEMaker Inc. 2-29

NVARCHAR | OBJECT | OF | OFF | ON | ONLY | OPEN | OPERATION |
OPTION | OR | ORDINALITY | OUT | OUTER | OUTPUT | PAD | PARTIAL |

PATH | POSTFIX | PREFIX | PREORDER | PREPARE | PRESERVE | PRIMARY |
PRIOR | PRIVILEGES | PROCEDURE | READ | READS | REAL | RECURSIVE |
REFERENCES | REFERENCING | RELATIVE | REPEAT | RESTRICT |

RESULT | RETURN | RETURNS | REVOKE | ROLE | ROLLBACK | ROLLUP |
ROUTINE | ROW | ROWS|SAVEPOINT | SCHEMA | SCROLL | SCOPE |
SEARCH | SECTION | SELECT| SENSITIVE | SEQUENCE | SERIAL | SESSION

| SESSION_USER | SET | SETS | SHORT | SIZE | SMALLINT | SOME |
SPECIFIC | SPECIFICTYPE | SQL | SQLCODE | SQLEXCEPTION |
SQLSTATE | SQLWARNING | START | STATIC | STATISTICS | STOP |

STRUCTURE | SYSTEM_USER | TABLE | TEMPORARY | TERMINATE |
THAN | THEN | TIME | TIMESTAMP | TIMEZONE_HOUR|
TIMEZONE_MINUTE | TO | TRACE | TRAILING | TRANSACTION |

TRANSLATION | TREAT | TRIGGER | TRUE | UNDER | UNION |
UNKNOWN | UNTIL | UNNEST | UPDATE | USAGE | USING | VALUE |
VALUES | VARBINARY | VARBPTR | VARCHAR | VARCPTR | VARIABLE |

VARYING | VIEW | WHEN | WHENEVER | WHERE | WHILE | WITH |
WITHOUT | WORK | WRITE | ZONE

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 2-30

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-1

3 SQL Commands

DBMaker provides a comprehensive SQL query language. SQL (Structured Query
Language) is a query language standardized by ANSI. The current standard is ANSI-
99 SQL. This chapter contains the DBMaker version of all supported ANSI-99

commands.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-2

3.1 ABORT BACKUP
The ABORT BACKUP command cancels an online backup. Cancel a backup if errors
occur during the backup operation or to perform the backup at another time. Only
users with SYSADM, SYSDBA or DBA security privileges can execute the ABORT

BACKUP command.

Backup mode indicates whether DBMaker will perform online incremental backups,
and what data to backup. There are three backup modes NONBACKUP, BACKUP-

DATA, and BACKUP-DATA-AND-BLOB. Set the backup mode in three ways using
the DB_BMode keyword in the dmconfig.ini configuration file, SQL SET command
at the dmSQL command prompt, or Server Manager Utility.

NONBACKUP mode provides no protection for data inserted or updated after the
last full backup. A database can use the Journal to fully recover from a program failure,
but a disk failure may result in loss of data. Immediately reuse Journal blocks not in

use by an active transaction, after a checkpoint. Once overwritten, the database can
only restore to the point in time of the last full backup.

BACKUP-DATA mode provides protection for data; excluding BLOB data inserted

or updated since the last full backup. In this mode, DBMaker can perform an online
incremental backup; only non-BLOB data will be stored in the backup files. A
database can use the Journal to fully recover from a program failure and can partially

recover from a disk failure. Journal blocks not in use by an active transaction can only
be reused after a checkpoint has taken place and the Journal file has been backed up.

BACKUP-DATA-AND-BLOB mode provides protection for all data including

BLOB data inserted or updated since the last full backup. In this mode, DBMaker can
perform an online incremental backup; all data will be stored in the backup files. A
database can use the Journal to fully recover from a program failure and fully recover

from a disk failure. Use the last backup to completely restore the database to the point
in time of the media failure, including all BLOB data. Journal blocks not in use by an
active transaction can only be reused after a checkpoint has taken place and the

Journal file has been backed up.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-3

Issuing the ABORT BACKUP command does not change the backup mode of the
database. The database will remain in the same backup mode it was in before the
backup started.

ABORT BACKUP

Figure 3-1 ABORT BACKUP syntax

 Example

The following example illustrates aborting a backup operation.
BEGIN BACKUP
ABORT BACKUP

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-4

3.2 ABORT CONNECTION
The ABORT CONNECTION command aborts an active connection but not
disconnect the connection from the database. Only users with DBA, SYSDBA or
SYSADM security privileges can execute the ABORT CONNECTION command.

The ABORT CONNECTION function is similar to the KILL CONNECTION
function, the only difference is that the connection cannot be disconnected, and will
rollback to latest commit state. The main purpose is interrupting query if it costs a

great deal of time, but not killing the connection.Executing this command will not
free all lock resources held by this user.

Please note that the abort connection will be rolled back. If the connection is being

carried out, it will be interrupted and rolled back. If the connection is not being
carried out, it will work until the connection executes next SQL statement and then
rolled back.

connection_id Number of the connection to abort

ABORT CONNECTION connection_id

Figure 3-2 ABORT CONNECTION syntax

 Example

The following example aborts the connection of which ID is 12345.
ABORT CONNECTION 12345

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-5

3.3 ADD TO GROUP
The ADD TO GROUP command adds a user to an existing group. The user gains all
current and future object privileges granted to the group. Only users with SYSADM,
SYSDBA or DBA security privileges can execute the ADD TO GROUP command.

Groups simplify management of object privileges in databases with a large number of
users. Use a group to collect several users and even other groups. Object privileges
granted to the group are automatically granted to members in the group.

Members added to a group also maintain previously assigned privileges. Members
removed from a group lose object privileges to that group, but retain any other
privileges granted to them directly or to another group.

Specify a group name in place of a user name, as long as the group does not already
contain a reference to that group. User and group names have a maximum length of
128 characters and may contain letters, numbers, the underscore character, and the $

and # symbols. The first character may not be a number.

user_name Name of an existing user that has at least the connect privilege.

group_name Name of an existing group.

ADD
user_name

,
TO GROUP group_name

Figure 3-3 ADD TO Group syntax

 Example 1

This example illustrates adding users Joe and John to the Manager group.
dmSQL> ADD Joe, John TO GROUP Manager;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-6

 Example 2

The following example illustrates adding the groups FullTime and PartTime to the
Staff group.
dmSQL> ADD FullTime, PartTime TO GROUP Staff;

 Example 3

The following example illustrates adding user Bill and the group FlexTime to the
Staff group.
dmSQL> ADD Bill, FlexTime TO GROUP Staff;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-7

3.4 ADD TRACE
The ADD TRACE command adds trace on a single table to log the detaile
OLD/NEW data. Actually, it is implemented by 3 internal triggers for
insert/update/delete operation, which operation on the traced table would be logged,

and the OLD/NEW data would be printed in DBNAME_currentdate_###.TXT as
extra information. Only users with table owner, DBA, SYSDBA or SYSADM security
privileges can execute the ADD TRACE command.

NOTE DB_LgSvr need to be equal or greater then 4. Otherwise, the detail
information would be skipped and nothing would be written to log files.

table_name Name of an exisiting single table

ADD TRACE ON table_name

Figure 3-4 ADD TRACE Syntax

 Example

Add trace on table tb1, and insert, update delete record.
dmSQL> ADD TRACE ON tb1;
dmSQL> INSERT INTO tb1 VALUES (1, 'abc');
1 rows inserted
dmSQL> UPDATE tb1 SET c2 = 'xyz' WHERE c1=1;
1 rows updated
dmSQL> DELETE FROM tb1;
1 rows deleted

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-8

3.5 ALTER DATAFILE
The ALTER DATAFILE command enlarges the size of a data or BLOB file by adding
a specified number of pages. Only users with SYSADM, SYSDBA or DBA security
privileges can execute the ALTER DATAFILE command.

Files are physical units of storage that contain data in a database. The operating system
manages files the DBMS managed data in the files. DBMaker uses Data, BLOB, and
Journal type files.

Data files and BLOB files store user and system data. Although they have similar
characteristics, DBMaker manages these two file types in different ways to improve
performance. Data files store table and index data, while BLOB files store Binary

Large Objects.

Journal files are special files that provide a real-time, historical record of all changes
made to a database and the status of each change. This allows the database to undo

changes made by a transaction that fails, or to redo changes made successfully but not
written to disk after a database crash. Journal files are used only by the database
management system, and are not used to store user data.

To ensure data independence of a database, operating system files cannot be
referenced directly. Each database file has two names a physical file name and a logical
file name. The physical file name is the name used by the operating system, while the

logical file name is the name used by the database. These two file names interact via an
entry in the dmconfig.ini file.

When using the ALTER DATAFILE command, specify the name of the logical file.

Add 1 to 2,147,483,645 pages to a file, providing the total number of pages in the file
does not exceed 2,147,483,647, and there is sufficient disk space. The total size of a
file or all files in the same tablespace cannot exceed 8 TB.

file_nameName of the logical file to enlarge

numberNumber of pages to add

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-9

ALTER DATAFILE file_name ADD number PAGES

Figure 3-5 ALTER DATAFILE syntax

 Example 1

The following is an excerpt from a dmconfig.ini file displaying entries for four
database files with the logical and physical file names. The logical file names display

on the left and the physical file names display on the right.
customer_data = d:\dbmaker\tutorial\database\custdata.db 500
customer_blob = d:\dbmaker\tutorial\database\custblob.bb 1000

 Example 2

The following example adds 1000 pages to the customer_data file.
dmSQL> ALTER DATAFILE customer_data ADD 1000 PAGES;

 Example 3

From the same dmconfig.ini file including the increased number of pages for the
customer_data file.
customer_data = d:\dbmaker\tutorial\database\custdata.db 1500
customer_blob = d:\dbmaker\tutorial\database\custblob.bb 1000

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-10

3.6 ALTER INDEX RENAME
The ALTER INDEX RENAME command renames an existing index on an existing
table. The renaming only affects the index name in the system catalog; it will not
rebuild the index in the database. Only the table owner, a DBA, or a user with the

INDEX privilege may execute the ALTER INDEX RENAME command on a table.

index_nameIndex's original name

new_index_nameIndex's new name

table_nameName of the table you are creating the index on

ALTER INDEX RENAME TOON table_name new_index_nameindex_name

Figure 3-6 ALTER IndexRename syntax

 Example
dmSQL> ALTER INDEX ix1 ON tb_tmp RENAME TO ix_new;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-11

3.7 ALTER PASSWORD
The ALTER PASSWORD command changes a user password from its current value
to a new value. A user can change their current password or the SYSADM may change
the current password of any user.

When a user wants to change their current password, they should use the ALTER
PASSWORD old_password TO new_password command. When the SYSADM
changes the current password, they use the ALTER PASSWORD OF user_name TO

new_password command. Only SYSADM may use the second command.

When changing a user password, the old password must match the password that is
stored in the database for that user. If a user has no password, assign a password using

the NULL keyword as the old password. To delete a user password use the NULL
keyword as the new password.

Passwords have a maximum length of sixteen characters and may contain letters,

numbers, the underscore character, and the $ and # symbols. The first character may
not be a number.

user_name Name of the user whose password is being changed

old_password Current password for user user_name

new_password New password for user user_name

ALTER PASSWORD
OF user_name

NULL
old_password

new_password

NULL
TO

Figure 3-7 ALTER PASSWORD syntax

 Example 1

The following example illustrates assigning the password abcdef for a user with no
password.
dmSQL> ALTER PASSWORD NULL TO abcdef;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-12

 Example 2

The following example illustrates changing a password from abcdef to a23456.
dmSQL> ALTER PASSWORD abcdef TO a23456;

 Example 3

The following example illustrates removing a password named a23456.
dmSQL> ALTER PASSWORD a23456 TO NULL;

 Example 4

The following example illustrates how the SYSADM can change the password of user
John to abcedf, regardless of the current value of the password.
dmSQL> ALTER PASSWORD OF John TO abcdef;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-13

3.8 ALTER REPLICATION ADD
REPLICATE
The ALTER REPLICATION ADD REPLICATE command adds an additional
remote table to an existing table replication. Add as many additional remote tables to a
replication as you wish. The table owner or a user with DBA, SYSDBA or SYSADM

security privilege can execute the ALTER REPLICATION ADD REPLICATE
command.

A table replication creates a full or partial copy of a table to a remote location. This

allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the database in another location. This way each database
can service data requests immediately and efficiently, without having to go to another

machine over a slower network connection. This is not the same as backing up the
database to a remote location. The synchronization is done on a transaction-by-
transaction basis by the DBMS without any intervention from users.

There are two primary types of table replication synchronous and asynchronous.
Synchronous table replication modifies the remote table at the same time it modifies
the local table. Asynchronous table replication stores changes to the local table and

modifies the remote table based on a predefined schedule. The ALTER
REPLICATION ADD REPLICATE command modifies both synchronous and
asynchronous table replications.

Synchronous table replication in DBMaker uses a global transaction model, in which
the replication of data to the remote table is treated as an integral part of the local
transaction. This means that if the replication of data to the remote database fails, the

transaction on the local table will also fail.

 A transaction is traditionally defined as a logical unit of work, or one or more
operations on a database that must be completed together to leave the database in a

consistent state. Transactions are self-contained and must either complete and change
the data, or fail and leave the data unchanged.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-14

Asynchronous table replication in DBMaker uses transaction logs to replicate data to
the remote table. Modifications to the local table are stored in the transaction log, and
replicated to the remote table according to a predefined schedule. Using the

transaction log enables DBMaker to treat the local transaction and the remote
transaction independently, allowing updates to the local tables even if the remote
connection is not available. This allows asynchronous table replications to tolerate

network and remote database failures; the replication will keep trying until any failures
are corrected.

When modifying a table replication specify the replication name, local table name,

and names of the additional remote tables to replicate to. The local table and the
remote tables must already exist in their respective databases. DBMaker automatically
drops any replications created for a table when dropping a table.

DBMaker will replicate an entire table unless a column list specifies the local table
columns. Only specify a column list for the local table when creating the replication.
To replicate an entire table without providing a column list, the columns in the local

and remote tables must have the same names and data types.

If the column names in the local and remote tables are different, provide a column list
for the remote table. Columns in the local table, from left to right, replicate to the

corresponding columns in the column list for the remote table. Alternately, explicitly
specify which columns in the local table correspond to columns in the remote table by
providing a column list for both the local and remote tables. The number and data

type of the primary key columns in both tables must match.

DBMaker does not identify replications using fully qualified names; a combination of
owner and object names, but associates them with tables instead. For this reason all

replication names on the same table must be unique.

Synchronous table replication operates with the same security and object privileges as
the owner of the local table. If the remote table is specified using links then the

replication operates with the same security and object privileges as the link.

Asynchronous table replication operates with the security privileges of the remote
account specified by the IDENTIFIED BY keywords in the CREATE SCHEDULE

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-15

command. Create a schedule for an asynchronous table replication before creating the
replication.

The CLEAR DATA/FLUSH DATA/CLEAR AND FLUSH DATA keywords are

optional. These keywords specify the operations that take place when creating a
replication. The CLEAR DATA keywords delete all data from the remote table when
a replication is created. The FLUSH DATA keywords copy all data that matches a

search condition into the remote table. The CLEAR AND FLUSH DATA keywords
clear all data from the remote table, and then copy all data that matches a search
condition into the remote table. If you do not specify an action, no action takes place.

The NO CASCADE keywords are optional. The keyword specifies a cascade
replication. For example, commands flow in most organizations from the highest level
to the basic level. This is similar to replicating data from point A to point B, and then

to point C. This is a typical kind of Cascade replication. In the No-Cascade model A
replicates data to B and B replicates data to A. If your data model works like this, you
can turn on the NO CASCADE option. If no specification exists, the default setting

CASCADE will be used.

replication_name Name of the table replication to add a remote table to.

local_table_name Name of the local table the replication was created on.

remote_table_name .. Name of the table in the remote database.

column_name Name of a column in the remote table to replicate to.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-16

ALTER REPLICATION replication_name

ADD REPLICATE TO

,

remote_table_name

column_name

,
)(

CLEAR DATA

FLUSH DATA

CLEAR AND FLUSH DATA

ON local_table_name

Figure 3-8 ALTER REPLICATION ADD REPLICATE syntax

 Example 1

The following modifies a replication named EmpRep created on the local
Employeesinfo table. Data replicates to the Div1Emp table in the remote database,

which is identified by a database configuration section named Div1Office in the local
dmconfig.ini file. All column names and data types in both tables are identical.
dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO
 Div1Office:Div1Emp;

 Example 2

The CLEAR DATA keyword causes DBMaker to delete all data in the remote table
before the replication begins:
dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO
 Div1Office:Div1Emp CLEAR DATA;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-17

 Example 3

The FLUSH DATA keyword causes DBMaker to send data in the local table to the
remote table before replication begins.
dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO
 Div1Office:Div1Emp FLUSH DATA;

 Example 4

The CLEAR AND FLUSH DATA keyword causes DBMaker to delete all data in the
remote table and then send data in the local table to the remote table.
dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO
 Div1Office:Div1Emp CLEAR AND FLUSH DATA;

 Example 5

The following adds the replication to the Div2Emp table in the remote Div2Office

database, and the Div3Emp table in the remote Div3Office database. Both remote
databases have a database configuration section with the same name as the database in
the local dmconfig.ini file.
dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO
 Div2Office:Div2Emp CLEAR DATA,
 Div3Office:Div3Emp FLUSH DATA;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-18

3.9 ALTER REPLICATION DROP
REPLICATE
The ALTER REPLICATION DROP REPLICATE command drops a remote table
from an existing table replication. Drop a remote table from a table replication when
you no longer want to replicate data to that table. Only the table owner or a user with

DBA, SYSDBA or SYSADM security privilege can execute the ALTER
REPLICATION DROP REPLICATE command.

A table replication creates a full or partial copy of a table in a remote location. This

allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the databases in other locations. This way each database
can service data requests immediately and efficiently, without having to go to another

machine over a slower network connection. This is not the same as backing up the
database to a remote location. The synchronization is done on a transaction-by-
transaction basis by the DBMS, without any user intervention.

There are two primary types of table replication, synchronous and asynchronous.
Synchronous table replication modifies the remote table at the same time it modifies
the local table. Synchronous table replication stores changes to the local table and

modifies the remote table based on a predefined schedule. The ALTER
REPLICATION DROP REPLICATE command modifies synchronous and
asynchronous table replications.

Synchronous table replication in DBMaker uses a global transaction model, in which
the replication of data to the remote table is treated as an integral part of the local
transaction. A transaction is traditionally defined as a logical unit of work, or one or

more operations on a database that must be completed together to leave the database
in a consistent state. Transactions are self-contained and must either complete and
change the data, or fail and leave the data unchanged. This means that if the

replication of data to the remote database fails, the transaction on the local table will
also fail.

Asynchronous table replication in DBMaker uses transaction logs to replicate data to

the remote table. Modifications to the local table are stored in the transaction log, and

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-19

are replicated to the remote table according to a predefined schedule. Using the
transaction log enables DBMaker to treat the local transaction and the remote
transaction independently, updating local tables normally even if the remote

connection is not available. This allows asynchronous table replications to tolerate
network and remote database failures. The replication will keep trying until all failures
are corrected.

To drop a remote table from a table replication, specify the replication name, the local
table name, and the name of the remote table. Drop more than one remote table from
a replication by listing all tables to drop. Any replications created for a table are

dropped automatically when dropping the table.

replication_name Name of the table replication to drop a remote table from.

local_table_name Name of the local table the existing replication was created on.

remote_table_name .. Name of the table in the remote database to stop replicating to.

ALTER REPLICATION replication_name ON local_table_name

remote_table_name

,
DROP REPLICATE TO

Figure 3-9 ALTER/DROP REPLICATION syntax

 Example 1

The following drops a remote table named Div1Emp from the replication named
EmpRep created on the local Employeesinfo table.
dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo DROP REPLICATE TO Div1Emp;

 Example 2

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-20

The following drops the remote tables named Div2Emp, Div3Emp, and Div4Emp
from the replication named EmpRep created on the local Employeesinfo table.
dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo DROP REPLICATE TO Div2Emp,
Div3Emp, Div4Emp;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-21

3.10 ALTER SCHEDULE
The ALTER SCHEDULE command changes the replication schedule for an
asynchronous table replication. Synchronous table replications do not use schedules,
so the ALTER SCHEDULE command has no effect on a synchronous table

replication. Only users with DBA, SYSDBA or SYSADM security privileges can
execute the ALTER SCHEDULE command.

A table replication creates a full or partial copy of a table in a remote location. This

allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the databases in other locations. This way each database
can service data requests immediately and efficiently, without having to go to another

machine over a slower network connection. This is not the same as backing up the
database to a remote location. The synchronization is done on a transaction-by-
transaction basis by the DBMS without any intervention from users.

There are two primary types of table replication, synchronous and asynchronous.
Synchronous table replication modifies the remote table at the same time it modifies
the local table. Asynchronous table replication stores changes to the local table and

modifies the remote table based on a predefined schedule. The ALTER SCHEDULE
command affects only asynchronous table replications.

BEGIN AT specifies the date and time of the first replication for an asynchronous

table replication. The date must be in yyyy/mm/dd format, where yyyy is the year in the
range from 1970 to 2038, mm is the month in the range from 01 to 12, and dd is the
date in the range from 01 to 31. The time must be in hh:mm:ss format, where hh is the

hour in the range from 00 to 23, mm is the number of minutes in the range from 00
to 59, and ss is the number of seconds in the range from 00 to 59. The value for the
year must be in the range from 1970 to 2038. Include both the date and time when

using the BEGIN AT keyword. If you change the date or time of the first replication
to a date in the future after a replication is already running, table data that has not yet
been replicated to the remote database will wait until the new time for replication.

EVERY, defines the interval between successive replications for an asynchronous table
replication. The interval may be provided as hours/minutes/seconds, days, or a

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-22

combination of both. To specify the number of hours/minutes/seconds, use EVERY
hh:mm:ss, where hh is the number of hours in the range 00 to 23, mm is the number of
minutes from 00 to 59, and ss is the number of seconds from 00 to 59. EVERY d

DAYS, specifies the number of days, where d is the number of days in the range from
1 to 365. To specify a combination of both, use EVERY d DAYS AND hh:mm:ss.

RETRY, indicates how many times DBMaker tries replicating table data if there is an

error while trying to process a single SQL statement, such as a lock time-out error, or
rollback to savepoint due to a full Journal. To specify the number of times to try, use
RETRY n TIMES, where n is the number of times to try in the range from 0 to

2,147,483,647. The default value is 0.

If DBMaker encounters a network error or remote database error that prevents it from
connecting to the remote server, DBMaker waits until the next scheduled replication

to send any table data that was not successfully replicated. It will retry once if it
encounters a transaction, which requires a rollback, but waits until the next scheduled
replication if this fails.

The AFTER keyword is optional. This keyword is used together with the RETRY
keyword to specify the interval between successive retries in the event of an error. Use
AFTER s SECONDS to specify the interval, where s is the number of seconds in the

range from 0 to 2,147,483,647. The default value is 5.

The ON ERROR keyword specifies the action DBMaker takes when data in the
remote database has been updated in such a way that the replication cannot take place.

This includes situations where DBMaker tries to delete a record from the remote
table, which has already been deleted, or tries to insert a record into a remote table
that already exists. DBMaker provides two options when encountering this type of

error, STOP ON ERROR and IGNORE ON ERROR. STOP ON ERROR
indicates DBMaker stops replicating data when an error of this type occurs. IGNORE
ON ERROR indicates that DBMaker ignores the data that caused the error and

continues replicating the remaining data. The default behavior is IGNORE.

The IDENTIFIED BY keywords specify the user name and password to use when
connecting to the remote database. The user name provided must be an existing user

in the remote database with sufficient privileges on the remote tables to perform

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-23

INSERT, DELETE, and UPDATE operations. Security and object privileges granted
to that user determine the operations that can be performed

Specify the remote database name to alter the schedule. The remote database name

cannot be a database link. All asynchronous table replications on this database will use
the new schedule.

yyyy/mm/dd Date to begin the replication

hh:mm:ss Time to begin the replication and time interval to replicate

d Day interval to replicate to the remote table

n Number of times to retry in the event of a failure

s Number of seconds to wait before retrying replication in the
event of a failure

user_name User name of the account in the remote database

password Password of the account in the remote database

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-24

ALTER SCHEDULE FOR REPLICATION TO remote_database_name

user_nameIDENTIFIED BY
password

IGNORE

STOP
ON ERROR

BEGIN AT yyyy/mm/dd hh:mm:ss EVERY hh:mm:ss

EVERY d DAYS AND hh:mm:ss

EVERY d DAYS

RETRY n TIMES
AFTER s SECONDS

Figure 3-10 ALTER SCHEDULE syntax

 Example 1

The following alters the replication schedule for the asynchronous replication named
EmpRep. The number of times to retry after an error lock time-out, or a rollback to

save point due to a full Journal, is set to 3, with an interval of 5 seconds between
successive retries.
dmSQL> ALTER SCHEDULE FOR REPLICATION TO EmpRep
 RETRY 3 TIMES AFTER 5 SECONDS;

 Example 2

The following alters the replication schedule for the asynchronous replication named
EmpRep. The action DBMaker should take when data in the remote database has

been updated in such a way that the replication couldn't take place is set to STOP:
dmSQL> ALTER SCHEDULE FOR REPLICATION TO EmpRep
 STOP ON ERROR;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-25

 Example 3

The following alters the replication schedule for the asynchronous replication named
EmpRep. The username and password used for connecting to the remote database is
set to a new value.
dmSQL> ALTER SCHEDULE FOR REPLICATION TO EmpRep
 IDENTIFIED BY RepUser rdejpe88;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-26

3.11 ALTER TABLE ADD COLUMN
The ALTER TABLE ADD COLUMN command modifies the definition of an
existing table and adds new columns. Only the table owner, a DBA, or a user with the
ALTER privilege for that table may execute the command.

Specify a column definition by providing a column name and a data type or domain.
Optionally, add multiple columns in a single command, however, the total number of
columns in the table, after executing the command, must not exceed the maximum

number of columns permitted in a table. The maximum number of columns allowed
in a table is 2000.

table_nameName of the table to add columns

column_definitionNew definition for the column to alter

ALTER TABLE table_name ADD
column_definition

,
()

Figure 3-11 ALTER TABLE ADD COLUMN syntax

Column Definition

Specify a data type for each column. DBMaker supports the following data types:
BIGINT, BIGSERIAL, BINARY, CHAR, DATE, DECIMAL, DOUBLE, FILE,
FLOAT, INTEGER, BLOB, CLOB, OID, SERIAL, SMALLINT, TIME,

TIMESTAMP and VARCHAR.

Optionally, specify a user-defined domain for the column instead of a data type.
Domains are a combination of data type, default value, and constraints that are

applied to a column when it is defined using the domain data type. See the

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-27

DEFAULT and CHECK keywords below for a description of default values and
constraints. Default values and constraints provided in the column definition will
override those of the domain. Column definitions can also provide constraints in

addition to those of the domain.

The NULL/NOT NULL keywords are optional. These keywords specify whether a
column can contain a NULL value; can be left empty, when inserting a new row. The

NULL keyword specifies that a column may contain an undefined value when a new
row is inserted. The NOT NULL keyword specifies that a value must be provided
when a new row is inserted. The NOT NULL keyword cannot be used unless a table

is empty, since the NOT NULL rule will be violated causing existing rows not to
contain a value for the column. As a result, the column will not be created.

The USER/SYSTEM keywords are optional. These keywords specify whether users

can modify value of the column with a default value by using the INSERT/UPDATE
statement. USER is used by default. The USER keyword specifies that users can
modify its value, and the SYSTEM keyword specifies that users cannot modify its

value.

The DEFAULT keyword is optional. This keyword is used to specify a default value
that will be inserted into a column if no value is provided when inserting a new row.

Constants, results from built-in functions, or the NULL keyword may be used as the
default value. Use built-in functions that have no argument, such as PI(), NOW(), or
USER(), when defining a column. When using the NULL keyword as the

DEFAULT value, the column cannot be defined with the NOT NULL keyword. The
DEFAULT keyword is not normally required when using user-defined domains
instead of the standard DBMaker data types, since domains normally include their

own DEFAULT clause.

The ON UPDATE keyword is optional. This keyword specifies that value of the
column with a default value can be automatically updated when other columns' value

is changed.

The CHECK keyword is optional. This keyword is used to specify a range of
acceptable values; constraints, that may be entered in a column. The expression that

specifies the range of acceptable values may be any expression that evaluates a true or

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-28

false statement. The VALUE keyword may be used in the expression in conjunction
with the CHECK keyword to represent the value of the column. If an SQL statement
does not satisfy the CHECK condition, it is not processed. The CHECK keyword is

not normally required when using user-defined domains in place of the standard
DBMaker data types, since domains normally include their own CHECK clause.

The GIVE keyword is optional. This keyword is used to specify the value inserted into

the new column for any rows that already exist in the table. If you do not provide a
value using the GIVE keyword, DBMaker inserts a NULL value into the new column
for any existing rows; columns using the SERIAL data type cannot contain NULL

values, use the GIVE keyword when adding a SERIAL column. Constants, results
from built-in functions, or the NULL keyword may be used as the GIVE value. Use
the NULL keyword as the GIVE value; the column cannot be defined with the NOT

NULL keyword. Also, use the SEQUENTIAL/SEQ keywords with the GIVE
keyword when you insert a SERIAL column. These keywords specify that DBMaker
will insert serial values into existing rows, starting with the value specified by the

definition of the SERIAL data type in the column definition. The serial values
continue to increment as new rows are inserted.

The BEFORE/AFTER keywords are optional. These keywords specify the location to

insert the new column in relation to an existing column. The BEFORE keyword
specifies DBMaker should insert the new column before, to the immediate left of, the
specified column. The AFTER keyword specifies DBMaker should insert the new

column after, to the immediate right of, the specified column. If you do not specify a
relative location using the BEFORE/AFTER keywords, DBMaker simply appends the
column to the right side of the table.

Adding a new column to a table has no effect on any views or synonyms based on that
table. Column names have a maximum length of 128 characters and may contain
letters, numbers, the underscore character, and the $ and # symbols. The first

character must not be a number.

column_nameName of the new column

data_typeData type to use for the new column

domain_nameName of the domain to use for the new column

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-29

literal Literal value to be used if no value is inserted

constant Constant value to be used if no value is inserted

function_name Built-in function to be used if no value is inserted

constraint_name Name of constraint to be put on column

boolean_expression Expression that evaluates to true or false

column_name_a The new column is positioned after the existing column with

name column_name_a

column_name_b The new column is positioned before the existing column with
name column_name_b

data_type

domain_name
NULL

NOT NULL
column_name

DEFAULT

constant

NULL

function_name

CHECK boolean_expression

USER
SYSTEM

ON UPDATE

constant

NULL
function _name

SEQUENTIAL

SEQ

GIVE
BEFORE column_ name_b

AFTER column_name_a

Figure 3-12 COLUMN DEFINITION syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-30

 Example 1

The following example adds the HireDate column with the DATE data type to the
Employeesinfo table.
dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE);

 Example 2

The following adds the same HireDate column from the previous example, but adds
the NOT NULL keyword to require a value is entered for this column when inserting

a new row.
dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE NOT NULL);

 Example 3

The following adds the same HireDate column from the previous example, but adds
the DEFAULT keyword to insert a default value if no value is entered. This is the
only case when you may omit a value for a column defined with the NOT NULL

keyword. In this example, the built-in function NOW() is used to insert the current
date if no value is specified for this column.
dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE NOT NULL DEFAULT NOW());

 Example 4

The following adds the same HireDate column from the previous example, but adds
the ON UPDATE keyword to auto update a default value if other columns's value is

changed.
dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE NOT NULL DEFAULT NOW() ON
UPDATE);

 Example 5

The following adds the same HireDate column from the previous example, but adds
the CHECK keyword to specify a range of acceptable values that may be entered in
the HireDate column. The VALUE keyword represents the value to enter in the

column.
dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE NOT NULL DEFAULT NOW() CHECK
VALUE > '01/01/1995');

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-31

 Example 6

The following adds the same HireDate column from the previous example, but uses
the user-defined D_ValidDates domain instead of the DATE data type. The
DEFAULT and CHECK keywords are usually not required when using domains,

since domains normally include their own DEFAULT and CHECK clauses.
dmSQL> ALTER TABLE Employeesinfo ADD (HireDate D_ValidDates NOT NULL);

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-32

3.12 ALTER TABLE ADD DYNAMIC
COLUMN
The ALTER TABLE ADD DYNAMIC COLUMN command adds description
information for a dynamic column. Only the table owner, a DBA, a SYSDBA, a
SYSADM, or a user with the ALTER privilege for that table may execute the ALTER

TABLE ADD DYNAMIC COLUMN command.

After a JSONCOLS column has been created, dynamic columns can be directly used
without defining. The default data type of dynamic columns is varchar(256), and

users can change the default data type to another data type with ALTER TABLE
ADD DYNAMIC COLUMN command. In addition, users also can declare data type
of a dynamic column with this command when this dynamic column is inserted into a

table.

However, if a user first inserts data without executing ALTER TABLE ADD
DYNAMIC COLUMN, but the inserted data cannot be converted to the data type

that is later declared with this command by the user, the data will be display as NULL
when a query statement is executed and no error occurs.

For details of a dynamic column, please refer to chapter Using Dynamic Column in

Database Administrator's Guide. For details of a JSONCOLS column, please refer to
chapter Using JSONCOLS Type in Database Administrator's Guide.

table_nameName of the table that has a JSONCOLS column

column_nameName of the dynamic column for which description information
is added

data_typeData type to use for the dynamic column/added description

information

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-33

ALTER TABLE table_name ADD DYNAMIC

column_name data_type
COLUMN

Figure 3-13 ALTER TABLE ADD DYNAMIC COLUMN syntax

 Example

The following example illustrates adding description information for a dynamic
column.
dmSQL> CREATE TABLE books(name CHAR(50),info JSONCOLS);
dmSQL> INSERT INTO books(name,id,price) VALUES('C language','abc','19');
1 rows inserted
dmSQL> INSERT INTO books(name,id,price) VALUES('College english','2','32');
1 rows inserted
dmSQL> ALTER TABLE books ADD DYNAMIC COLUMN id INT;
dmSQL> ALTER TABLE books ADD DYNAMIC COLUMN price FLOAT;
dmSQL> SELECT name,id,price FROM books;
 NAME ID PRICE
=================================== ========== ====================
C language NULL 1.900000000000e+001
College english 2 3.200000000000e+001
2 rows selected

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-34

3.13 ALTER TABLE DROP COLUMN
The ALTER TABLE DROP COLUMN command modifies the definition of an
existing table and drops a column that was previously defined. To execute the ALTER
TABLE DROP COLUMN command on a table, only the table owner, a DBA, a

SYSDBA, a SYSADM, or user with ALTER privilege for that table.

Use this command to drop a column from a table when it is no longer necessary. You
cannot drop a column if a primary or foreign key has been defined on that column,

unless you drop the primary or foreign key first. If you drop a column with a defined
view, the view will become invalid and DBMaker returns an error if you try to use it.
This command should be used with caution since the data in a column cannot be

recovered once dropped.

The CASCADE/RESTRICT keywords are optional. These keywords denote whether
to remove or check dependent objects refered to the dropped column. When the

CASCADE keyword is specified, it will remove all the dependent objects with the
column. When the RESTRICT keyword is specified, it will not drop column that is
referenced by any view definition, foreign key, or constraint. The RESTRICT

keyword ensures that only columns with no dependent objects can be deleted.

table_nameName of the table dropping the column

column_nameName of the column to be dropped

column_name

,

ALTER TABLE table_name DROP CASCADE

RESTRICT

()

Figure 3-14 ALTER TABLE DROP COLUMN syntax

 Example 1

This command drops the BirthDate column from the Employeesinfo table.
dmSQL> ALTER TABLE Employeesinfo DROP (BirthDate);

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-35

 Example 2

The following command drops the BirthDate and HireDate columns from the
Employeesinfo table.
dmSQL> ALTER TABLE Employeesinfo DROP (BirthDate, HireDate);

 Example 3

The following command drops the column BirthDate from the Employeesinfo table
and the dependent view EmpView.
dmSQL> CREATE VIEW EmpView AS SELECT BirthDate FROM Employeesinfo;
dmSQL> ALTER TABLE Employeesinfo DROP (BirthDate) CASCADE;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-36

3.14 ALTER TABLE DROP DYNAMIC
COLUMN
The ALTER TABLE DROP DYNAMIC COLUMN command drops the description
information of a dynamic column, but doesn't drop data of this dynamic column. To
execute the ALTER TABLE DROP DYNAMIC COLUMN command on a table,

only the table owner, a DBA, a SYSDBA, a SYSADM, or user with ALTER privilege
for that table.

Please note that, if a user drops a JSONCOLS column or the table which contains this

JSONCOLS column, the description information of the dynamic columns contained
in this JSONCOLS column will be automatically dropped by system.

For details of a dynamic column, please refer to chapter Using Dynamic Column in

Database Administrator's Guide. For details of a JSONCOLS column, please refer to
chapter Using JSONCOLS Type in Database Administrator's Guide.

table_nameName of the table containing the dynamic column to drop

descripton information

column_nameName of the dynamic column to drop description information

ALTER TABLE table_name DROP DYNAMIC

column_name
COLUMN

Figure 3-15 ALTER TABLE DROP DYNAMIC COLUMN syntax

 Example

The following example illustrates dropping description information of the dynamic

column id. For details of table books, please refer to ALTER TABLE ADD DYNAMIC
COLUMN.
dmSQL> ALTER TABLE books DROP DYNAMIC COLUMN id;
dmSQL> SELECT name,id,price FROM books;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-37

 NAME ID PRICE
============= ========================= ==============
C language abc *9e+001
College engl* 2 *3e+001
2 rows selected

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-38

3.15 ALTER TABLE DROP FOREIGN
KEY
The ALTER TABLE DROP FOREIGN KEY command modifies the definition of an
existing table and drops a foreign key that was previously defined. Only the table
owner, a DBA, or a user with the ALTER privilege for the table may execute the

command.

A key is a column or combination of columns that help identify specific rows in a
table. The columns that make up a key are known as key columns. A unique key is a key

in which no two records have the same value for the key field.

A primary key is a key that uniquely identifies each row in a table. Without a primary
key, it is impossible to distinguish between specific rows in a table because rows may

contain duplicate values. The DBMS does not allow defining of a primary key on
columns that contain duplicate values or entering a duplicate value in a primary key
that already exists.

A foreign key is a key that corresponds to the primary key or a unique index of another
table. This establishes a parent-child relationship between two tables that are
represented by common data values. The parent table contains the primary key or

unique index, and the child table contains the foreign key.

Referential integrity ensures that every value in a child key; the foreign key of the child
table, has a corresponding value in the parent key; the primary key or unique index of

the parent table. Referential integrity is enforced between tables using the parent-child
relationship established with foreign keys. DBMaker has automatic support for
referential integrity constraints between tables through the definition of foreign keys.

When adding a record to a child table, the value in the child key must also exist in the
parent key. Similarly, when deleting a record from the parent table, all records in the
child key with the same value must be deleted first.

Referential actions provide a means to update or delete a parent key when referential
integrity would not normally allow it, for example, when a child key references a
parent key. The referential actions define the operation DBMaker should perform on

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-39

all matching child keys when you update or delete a parent key. DBMaker supports
four referential actions for both updates and deletes: CASCADE, SET NULL, SET
DEFAULT, and NO ACTION. CASCADE performs the update or delete on

matching child keys as well as the parent key. SET NULL sets the value of matching
child keys to NULL. SET DEFAULT sets the value of matching child keys to the
default value of the column. NO ACTION enforces normal referential integrity rules.

When no referential action is defined when a foreign key is created then, DBMaker
uses NO ACTION by default.

Use the ALTER TABLE DROP FOREIGN KEY command to drop a foreign key on

a table when it is no longer necessary. After dropping a foreign key, DBMaker no
longer enforces referential integrity or performs referential actions on the child table.
Without the foreign key it is possible to enter values in the child table that do not exist

in the parent table and to update or delete values in the parent table. This command
should be used with caution.

table_name Name of the table dropping the foreign key

key_name Name of the foreign key to be dropped

ALTER TABLE table_name DROP FOREIGN KEY key_name

Figure 3-16 ALTER TABLE DROP FOREIGN KEY syntax

 Example

The following drops foreign key fkey from the Salary table.
dmSQL> ALTER TABLE Salary DROP FOREIGN KEY fkey;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-40

3.16 ALTER TABLE DROP PRIMARY
KEY
The ALTER TABLE DROP PRIMARY KEY command modifies the definition of an
existing table and drops the primary key that was previously defined. Only the table
owner, a DBA, or a user with both the ALTER and INDEX privileges for that table

may execute the command.

A key is a column or combination of columns that help identify specific rows in a
table. The columns that make up keys are key columns. A unique key is a key in which

no two records have the same value for the key field.

A primary key is a key that uniquely identifies each row in a table. Without a primary
key, it is impossible to distinguish between specific rows in a table because rows may

contain duplicate values. The DBMS does not allow defining of a primary key on
columns that contain duplicate values, and does not allow a duplicate value in a
primary key.

A foreign key is a key that corresponds to the primary key or a unique index of another
table. This establishes a parent-child relationship between two tables that are
represented by common data values. The parent table contains the primary key or

unique index, and the child table contains the foreign key columns corresponding to
columns in the parent table.

Referential integrity ensures that every value in a child key; the foreign key of the child

table, has a corresponding value in the parent key; the primary key or unique index of
the parent table. Referential integrity is enforced between tables using the parent-child
relationship established with foreign keys. DBMaker has automatic support for

referential integrity constraints between tables through the definition of foreign keys.
When adding a record to a child table, the value in the child key must also exist in the
parent key. Similarly, when deleting a record from the parent table, all records in the

child key with the same value must be deleted first.

Use the ALTER TABLE DROP PRIMARY KEY command to drop the primary key
on a table when it is no longer necessary. DBMaker enforces referential integrity when

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-41

a foreign key is defined. Drop all foreign keys that refer to a primary key before you
drop the primary key. After dropping a primary key, DBMaker no longer requires a
unique key value for each record; it will be possible to enter values that may make two

records indistinguishable from each other possibly causing database inconsistency. Use
this command with caution.

table_name The name of the table from which the primary key is dropped

ALTER TABLE table_name DROP PRIMARY KEY

Figure 3-17 ALTER TABLE DROP PRIMARY KEY syntax

 Example

The following command drops the Primary Key from the Employeesinfo table.
dmSQL> ALTER TABLE Employeesinfo DROP PRIMARY KEY;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-42

3.17 ALTER TABLE FOREIGN KEY
The ALTER TABLE FOREIGN KEY command modifies the definition of an
existing table and adds a new foreign key. To execute the ALTER TABLE FOREIGN
KEY command on a table, you must have the DBA security privilege, ALTER

privilege on the table, and be the owner of the table, or have the REFERENCE
privilege on the columns or table containing the primary key.

A key is a column or combination of columns that help identify specific rows in a

table. The columns that make up a key are known as key columns. A unique key is a key
in which no two records have the same value for the key field.

A primary key is a key that uniquely identifies each row in a table. Without a primary

key, it is impossible to distinguish between specific rows in a table because rows may
contain duplicate values. The DBMS does not allow you to define a primary key on
columns that contain duplicate values, and does not allow entering a duplicate value in

a primary key that already exists.

A foreign key is a key that corresponds to the primary key or a unique index of another
table. This establishes a parent-child relationship between two tables that is

represented by common data values stored in the tables. The parent table contains the
primary key or unique index, and the child table contains the foreign key columns
corresponding to columns in the parent table.

Referential actions provide a means to update or delete a parent key when referential
integrity would not normally allow it such as when a parent key is referenced by a
child key. The referential actions define the operation DBMaker should perform on all

matching rows in the child key when updating or deleting a parent key. DBMaker
supports four referential actions for both updates and deletes: CASCADE, SET
NULL, SET DEFAULT, and NO ACTION.

The ON UPDATE/ON DELETE keywords are optional. These keywords specify the
referential action DBMaker should perform when updating or deleting a value in a
parent key. The referential actions for these keywords are CASCADE, SET NULL,

SET DEFAULT, and NO ACTION.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-43

CASCADE performs an update or delete on all matching values in the child key when
updating or deleting the parent key. This will set the value of the child key to the same
value as the parent key when a row in the parent key updates, or will delete all

matching values in the child key with the same value as the parent key when deleting a
row in the parent key.

SET NULL sets all matching values in the child key to NULL when you update or

delete a row in the parent key. You cannot use the SET NULL action when the child
key was defined with the NOT NULL constraint.

SET DEFAULT sets all matching values in the child key to the default value of the

column when you update or delete a row in the parent key. You cannot use the SET
DEFAULT action when the default value is NULL and the child key was defined with
the NOT NULL constraint.

NO ACTION enforces normal referential integrity rules. DBMaker will use NO
ACTION by default.

No limit exists for the number of foreign keys on a table. The parent key may be the

primary key or any other unique index of a table, but create the parent key before
adding the child key. The number of columns and column type or length must be the
same in the parent key and the child key. The column order of corresponding keys

may be different in each table, provided they are listed in corresponding order in the
ALTER TABLE FOREIGN KEY command. The primary key of the parent table is
used by default.

Columns in a foreign key may contain null values. If a foreign key contains a null
value, it automatically satisfies referential integrity. You may not create a foreign key
on a view, but may create one on a synonym. Foreign key names have a maximum

length of 128 characters, and may contain numbers, letters, underscore characters, and
$ and # symbols. The first character may not be a number.

table_name Name of the table adding the foreign key to

key_name Name of the new foreign key

column_name 1. Name of the column the foreign key is created on

 2. Name of the column referenced by the foreign key

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-44

parent_table_name ...Name of the table the foreign key references

REFERENCES parent_table_name

olumn_name

,
)(

key_name

column_name

,
()

ALTER TABLE table_name FOREIGN KEY

ON UPDATE

CASCADE

SET DEFAULT
SET NULL

NO ACTION

ON DELETE

CASCADE

SET DEFAULT
SET NULL

NO ACTION

Figure 3-18 ALTER TABLE FOREIGN KEY syntax

 Example 1

The following creates a foreign key named fkey_CNo on column CustNo of table
Accounts that references the Customers table. In the example, no column name is

specified for the parent key, DBMaker will use the primary key of the Customers table
as the parent key. The primary key of the Customers table must be defined before
executing the command.
dmSQL> ALTER TABLE Accounts FOREIGN KEY fkey CNo (CustNo)
 REFERENCES Customers;

 Example 2

The following creates the same foreign key fkey_CNo from the previous example, but

specifies the CustNo column as the parent key. The CustNo column can be the
primary key of the Accounts table or any other unique index. The primary key or

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-45

other unique index of the Customers table must be defined before executing this
command.
dmSQL> ALTER TABLE Accounts FOREIGN KEY fkey CNo (CustNo)
 REFERENCES Customers (CustNo);

 Example 3

The following creates a foreign key named fkey_No on columns PartNo and StockNo
of table Invoice that references the Stock table. Column order in the Invoice table

(PartNo, SuppNo) is different from the corresponding columns in the Stock table
(SuppNo, PartNo). This is acceptable provided corresponding columns from each
table are listed in the same order in the command.
dmSQL> ALTER TABLE Invoice FOREIGN KEY fkey No (SuppNo, PartNo)
 REFERENCES Stock (SuppNo, PartNo);

 Example 4

The following creates the same foreign key fkey_No from the previous example, but

defines the referential actions DBMaker should perform. The ON UPDATE SET
DEFAULT keywords specify DBMaker to set all matching values in the child key to
the default column value when updating a row in the parent key. The ON DELETE
SET NULL keywords specify DBMaker to set all matching values in the child key to
NULL when deleting a row in the parent key.
dmSQL> ALTER TABLE Invoice FOREIGN KEY fkey No (SuppNo, PartNo)
 REFERENCES Stock (SuppNo, PartNo)
 ON UPDATE SET DEFAULT
 ON DELETE SET NULL;

_

_

_

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-46

3.18 ALTER TABLE MODIFY
COLUMN
The ALTER TABLE MODIFY COLUMN command modifies the definition of
existing columns in a table. Only the table owner, a DBA, a SYSDBA, a SYSADM, or
a user with the ALTER privilege for that table may execute the ALTER TABLE

MODIFY COLUMN command.

table_nameName of the table you are modifying the column on

column_nameName of the column you are modifying

column_definitionNew definition for the column

ALTER TABLE table_name

MODIFY ()
column_name

,

TO column_definition

Figure 3-19 ALTER TABLE MODIFY COLUMN syntax

Column Definitions

To specify a column definition, provide a column name and a data type or domain.

Modify multiple columns in a single command, up to the maximum number of 252
columns permitted in a table.

Specify a data type for each column modified. DBMaker supports the following data

types: BINARY, CHAR, DATE, DECIMAL, DOUBLE, FILE, FLOAT, INTEGER,
BLOB, CLOB, OID, SERIAL, SMALLINT, TIME, TIMESTAMP and VARCHAR.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-47

Optionally, specify a user-defined domain for the column instead of a data type.
Domains are a combination of data type, default value, and constraint that are applied
to a column when it is defined using a domain data type. (See the DEFAULT and

CHECK keywords below for a description of default values and constraints). Default
values and constraints provided in the column definition will override those of the
domain. Column definitions can also provide constraints in addition to those of the

domain.

The NULL/NOT NULL keywords are optional. These keywords specify whether a
column can contain a NULL value, left empty, when inserting a new row. The NULL

keyword specifies that a column may contain an undefined value when inserting a new
row. The NOT NULL keyword specifies that a value must be provided when a new
row is inserted. The NOT NULL keyword cannot be used when modifying a column

that was previously defined with NULL, unless the table is empty, or by using the
GIVE keyword.

The USER/SYSTEM keywords are optional. These keywords specify whether users

can modify value of the column with a default value by using the INSERT/UPDATE
statement. USER is used by default. The USER keyword specifies that users can
modify its value, and the SYSTEM keyword specifies that users cannot modify its

value.

The DEFAULT keyword is optional. This keyword is used to specify a default value
that will be inserted into a column if no value is provided. Constants, results from

built-in functions, or the NULL keyword may be used as the default value. Only use
built-in functions that have no argument PI(), NOW(), or USER(), when defining a
column. Use the NULL keyword as the DEFAULT value; the column cannot be

defined with the NOT NULL keyword. The DEFAULT keyword is not normally
required when using user-defined domains instead of the standard DBMaker data
types, since domains normally include their own DEFAULT clause.

The ON UPDATE keyword is optional. This keyword specifies that value of the
column with a default value can be automatically updated when other columns' value
is changed.The CHECK keyword is optional. This keyword is used to specify a range

of acceptable values that may be entered in a column. The expression that specifies the
range of acceptable values may be any expression that evaluates a true or false

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-48

statement. The VALUE keyword may be used in the expression in conjunction with
the CHECK keyword to represent the value of the column. If an SQL statement does
not satisfy the CHECK conditions, it is not processed. The CHECK keyword is not

normally required when using user-defined domains instead of the standard DBMaker
data types.

The GIVE keyword is optional. This keyword is used to specify the value inserted into

the modified column for any existing rows that contain NULL values. If you modify a
column from NULL to NOT NULL and do not provide a value using the GIVE
keyword, DBMaker will not modify the column. Constants, results from built-in

functions, or the NULL keyword may be used as the GIVE value. Use the NULL
keyword as the GIVE value; the column cannot be defined with the NOT NULL
keyword. Alternately, use the SEQUENTIAL/SEQ keywords with the GIVE keyword

when modifying a column to a SERIAL column. These keywords specify that
DBMaker will insert serial values into existing rows, starting with the value specified
by the definition of the SERIAL data type in the column definition. The serial values

will continue to increment as you insert new rows.

The BEFORE/AFTER keywords are optional. These keywords specify the location to
position the modified column in relation to another column. The BEFORE keyword

specifies DBMaker to position the modified column before; to the immediate left of,
the specified column. The AFTER keyword specifies DBMaker to position the
modified column after; to the immediate right of, the specified column. If you do not

specify a relative location using the BEFORE/AFTER keywords, DBMaker leaves the
column in the original position.

Modifying a column in a table makes all views and stored commands defined on the

table invalid, but has no effect on any synonyms based on that table. Column names
have a maximum length of 128 characters, and may contain letters, numbers, the
underscore character, and the $ and # symbols. The first character may not be a

number.

column_nameName of the modified column

data_typeData type to use for the modified column

domain_nameName of the domain to use for the modified column

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-49

literal Literal value to be used if no value is inserted

constant Constant value to be used if no value is inserted

function_name Built-in function to be used if no value is inserted

constraint_name Constraint to be applied to the column

boolean_expression Expression that evaluates to true or false

column_name_a The modified column will be positioned after column_name_a

column_name_b The modified column will be positioned before column_name_b

data_type

domain_name
NULL

NOT NULL
column_name

DEFAULT

constant

NULL

function_name

CHECK boolean_expression

USER
SYSTEM

ON UPDATE

constant

NULL
function _name

SEQUENTIAL

SEQ

GIVE
BEFORE column_ name_b

AFTER column_name_a

Figure 3-20 The Column Definitions syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-50

 Example 1

The following modifies the length of the Phone column in the Employeesinfo table
by changing the data type from CHAR(15) to CHAR(20).
dmSQL> ALTER TABLE Employeesinfo MODIFY (Phone TO Phone CHAR(20));

 Example 2

The following modifies the length of the Phone column in the Employeesinfo table
by changing the data type from CHAR(15) to CHAR(20). Adds the NOT NULL

keyword and requires a value to be entered for this column, when inserting a new row.
Any rows that previously contained NULL values are assigned a new value using the
GIVE keyword.
dmSQL> ALTER TABLE Employeesinfo MODIFY (Phone TO Phone CHAR(20)
 NOT NULL
 GIVE '000-0000');

 Example 3

The following modifies the data type of the Quantity and Amount columns in the

LineItems table by changing the data type of both columns from SMALLINT to
INT.
dmSQL> ALTER TABLE LineItems MODIFY (Quantity TO Quantity INT,
 Amount TO Amount INT);

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-51

3.19 ALTER TABLE MODIFY
DYNAMIC COLUMN
The ALTER TABLE MODIFY DYNAMIC COLUMN command modifies the
existing description information of a dynamic column. To execute the ALTER
TABLE MODIFY DYNAMIC COLUMN command on a table, only the table

owner, a DBA, a SYSDBA, a SYSADM, or user with ALTER privilege for that table.

Dynamic columns only support modifying data type.

For details of dynamic columns, please refer to chapter Using Dynamic Column in

Database Administrator's Guide.

table_name Name of the table containing the dynamic column whose
description information will be modified

column_name Name of the dynamic column whose description information
will be modified

data_type Data type to use for the modified dynamic column

ALTER TABLE table_name MODIFY DYNAMIC

column_name data_type
COLUMN

TYPE TO

Figure 3-21 ALTER TABLE MODIFY DYNAMIC COLUMN syntax

 Example

The following example illustrates modifying description information of the dynamic
column price. For details of table books, please refer to ALTER TABLE ADD
DYNAMIC COLUMN.
dmSQL> ALTER TABLE books MODIFY DYNAMIC COLUMN price TYPE TO INT;
dmSQL> SELECT name,id,price FROM books;
 NAME ID PRICE
============= ========================= ==============

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-52

C language abc 19
College engl* 2 32
2 rows selected

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-53

3.20 ALTER TABLE PRIMARY KEY
The ALTER TABLE PRIMARY KEY command modifies the definition of an existing
table and adds a primary key. Only the table owner, a DBA, or a user with both the
ALTER and INDEX privileges for the table may execute the command.

A key is a column or combination of columns that help identify specific rows in a
table. A unique key is a key in which no two records have the same value or the key
field.

A primary key is a key that uniquely identifies each row in a table. Without a primary
key, it is impossible to distinguish between specific rows in a table because rows may
contain duplicate values. The DBMS will not define a primary key on columns that

contain duplicate values, or enter a duplicate value in a primary key that already exists.

A foreign key is a key that corresponds to the primary key or a unique index of another
table. This establishes a parent-child relationship between two tables that is

represented by common data values stored in the tables. The parent table contains the
primary key or unique index, and the child table contains the foreign key columns
corresponding to columns in the parent table.

Referential integrity ensures that every value in a child key; the foreign key of the child
table, has a corresponding value in the parent key; the primary key or unique index of
the parent table. Referential integrity is enforced between tables using the parent-child

relationship established with foreign keys. DBMaker has automatic support for
referential integrity constraints between tables through the definition of foreign keys.
When adding a record to a child table, the value in the child key must also exist in the

parent key. Similarly, when deleting a record from the parent table, all records in the
child key with the same value must be deleted first.

Primary keys ensure data integrity in a table by requiring unique key values in each

record of the primary key. Since this means columns in a primary key may not contain
duplicate or null values, define the key columns with the NOT NULL constraint.

Each table may only have one primary key. You cannot name a primary key for this

reason. Instead, DBMaker will automatically create and maintain a unique, internally

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-54

managed index named PrimaryKey for the primary key in each table. Since DBMaker
builds an index on the primary key, it is not necessary to build another index on the
columns in the primary key to increase the performance of query operations.

Primary keys may be built on up to 32 columns, providing the size of the columns
does not exceed 4000 bytes. Primary keys cannot be created on views, but may be
created on synonyms. When creating a primary key on a synonym, the primary key is

created on the base table.

table_nameName of the table adding the primary key to

column_nameName of the column the primary key is created on

ALTER TABLE PRIMARY KEY
column_name

,
()table_name

Figure 3-22 ALTER TABLE PRIMARY KEY syntax

 Example

The following example creates a primary key on column CustNo in the Customers
table. The CustNo column must be defined with the NOT NULL constraint, and all

values in the CustNo column must be unique, or the table must be empty.
dmSQL> ALTER TABLE Customers PRIMARY KEY (CustNo);

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-55

3.21 ALTER TABLE RENAME
The ALTER TABLE RENAME command changes the name of an existing table.
Only the table owner, a DBA, or a user with the ALTER privilege for that table can
execute the ALTER TABLE RENAME command on a table.

A table name can be renamed when it only contains an index and/or text index.
Dependent objects like stored command, stored procedure, trigger, and foreign key
are not supported with the RENAME command.

table_name The table's name to alter

new_table_name The table's new name

ALTER TABLE table_name RENAME TO new_table_name

Figure 3-23 ALTER TABLE RENAME Syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-56

3.22 ALTER TABLE SET OPTIONS
The ALTER TABLE SET OPTIONS command modifies the definition of an existing
table and changes its options. Only the table owner, a DBA, or a user with the
ALTER privilege for that table can execute the ALTER TABLE SET OPTIONS

command on a table.

LOCK MODE specifies the lock mode (lock level) DBMaker uses when accessing
data in a table. DBMaker has three lock modes; table, page, and row. Page lock mode

is set by default. To determine the lock mode of a table, examine the LOCKMODE
column of the SYSTABLE.

LOCK MODE TABLE locks an entire table. This mode decreases concurrency by

preventing simultaneous user access to the locked table. It also uses fewer lock
resources and requires less memory in the System Control Area (SCA).

LOCK MODE PAGE locks a single data page. This mode is a trade-off between

concurrency and lock resources. It provides moderate concurrency since other users
may access data in other pages, but not in the locked page.

LOCK MODE ROW locks a single row. This mode increases concurrency by

allowing additional users to access any data except the locked row. It also uses more
lock resources and requires more memory in the SCA.

FILLFACTOR specifies the maximum percentage of a data page that can be filled.

This allows the database to optimize the use of data pages by reserving space for future
updates to existing records. The number parameter can have a value from 50 to 100,
which represent a fillfactor from 50% to 100%. To determine the fillfactor of a table,

examine the FILLFACTOR column of the SYSTABLE system table.

NOCACHE limits the number of page buffers used to cache data during a table scan.
DBMaker stores page buffers in a buffer chain with the most recently used page at the

beginning. When the NOCACHE option is turned on, data pages read during a table
scan are placed at end of the buffer chain. The end of the buffer chain will be flushed
before the beginning and subsequent data pages read during the table scan will

overwrite the previous pages. This effectively limits the page buffers used during a

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-57

table scan to one page buffer. To determine the cache mode of a table, examine the
CACHEMODE column of the SYSTABLE system table.

The SERIAL option resets the counter for a serial column. This allows starting a new

sequence in a serial column without having to modify the table.

Using the ALTER TABLE SET OPTIONS command has no effect on any views or
synonyms based on that table.

table_name Name of the table to change options on

number Value to use for the fillfactor

n Time interval in days to wait between statistics updates

ALTER TABLE

ON

OFF

NOCACHE

FILLFACTOR number

TABLE

PAGE

ROW

 LOCK MODE

UPDATE STATISTICS EVERY n DAYS

table_name set

Figure 3-24 ALTER TABLE SET OPTIONS syntax

 Example 1

The following sets the LOCK MODE to TABLE on the Customers table.
dmSQL> ALTER TABLE Customers SET LOCK MODE TABLE;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-58

 Example 2

The following sets the LOCK MODE to PAGE on the Customers table.
dmSQL> ALTER TABLE Customers SET LOCK MODE PAGE;

 Example 3

The following sets the LOCK MODE to ROW on the Customers table.
dmSQL> ALTER TABLE Customers SET LOCK MODE ROW;

 Example 4

The following sets the FILLFACTOR to 90% on the Customers table.
dmSQL> ALTER TABLE Customers SET FILLFACTOR 90;

 Example 5

The following turns on the NOCACHE option on the Customers table.
dmSQL> ALTER TABLE Customers SET NOCACHE ON;

 Example 6

The following turns off the NOCACHE option on the Customers table.
dmSQL> ALTER TABLE Customers SET NOCACHE OFF;

 Example 7

The following alters the SERIAL counter value of table tb_tmp from its current value
to 100.
dmSQL> ALTER TABLE tb_tmp SET SERIAL 100;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-59

3.23 ALTER TABLE TO ANOTHER
TABLESPACE
The ALTER TABLE TO ANOTHER TABLESPACE command moves a table to
another tablespace, at the same time, move the index to another tablespace if the index
and the table in the same tablespace. In addition, if the index and the table in different

tablespace, the index will not be moved to another tablespace, so we can rebuild index
in another tablespace. Only the table owner, a DBA, or a user with both the ALTER
and INDEX privileges for the table may execute the command.

Setting FASTCOPY ON, a user can improve execution speed of moving a table to
another tablespace. When a table is moved, system will directly copy one data page to
another data page, with log files operated only once in a copying and the buffer

needless. Therefor the repeated operations of the log will be greatly reduced.

Move a table to another tablespace can store the table to other disk, and avoid the
table can't store data while disk full.

Altering table to another tablespace has some limitations:

• Users cannot alter a system table, temporary table or view to another tablespace.

• Users cannot move a permanent table to SYSTABLESPACE or

TMPTABLESPACE.

• Users cannot rebuild index for permanent table in TMPTABLESPACE.

• Users cannot rebuild index for temporary table in NON-TMPTABLESPACE.

• Users cannot rebuild index for system table in other tablespace.

• Users cannot copy data from one table to the same table.

• Users cannot move table from one tablespace to the same one.

table_name Name of the table to be moved

tablespace_name Name of the tablespace to move to

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-60

ALTER TABLE table_name MOVE TABLESPACE tablespace_name

Figure 3-25 ALTER TABLE TO ANOTHER TABLESPACE syntax

 Example

The following moves the table Employeesinfo in ts_mode to another tablespace

ts_new.
dmSQL> ALTER TABLE Employeesinfo MOVE TABLESPACE ts_new;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-61

3.24 ALTER TABLESPACE
The ALTER TABLESPACE command adds a file to an existing tablespace or changes
the tablespace type from autoextend to regular or from regular to autoextend or
changes the tablespace type from read-write to read-only or from read-only to read-

write. Only users with DBA, SYSDBA or SYSADM security privileges can execute the
ALTER TABLESPACE command.

The way data is physically stored on computers has little or no significance to most

users. DBMaker uses the relational data model to hide the details of the physical
storage model and present data using a logical storage model instead.

In the DBMaker physical storage model, files are physical storage structures that

contain the data in the database. Files are managed by the operating system, with the
exception of raw UNIX devices, while data in the files are managed by the DBMS.
DBMaker uses three types of files during normal operation Data, BLOB, and Journal.

Journal files are special files that provide a real-time, historical record of all changes
made to a database and the status of each change. This allows the database to undo
changes made by a transaction that fails or to redo changes made successfully but not

written to disk after a database crash. Journal files are used only by the database
management system not to store user data.

Data files and BLOB files are used to store user and system data. Although they have

similar characteristics, DBMaker manages these two file types in different ways to
improve performance. Data files store table and index data, while BLOB files store
only Binary Large OBjects (BLOBs).

In the DBMaker logical storage model, tablespaces are the logical storage structures
used to partition information in a database into manageable areas. Each tablespace
may contain several tables and indexes. Data in the tablespace is managed by the

DBMS, but is physically stored in files. There are three types of tablespaces: regular,
autoextend, and system.

Regular tablespaces have a fixed size and contain one or more data or BLOB files. They

may be extended manually by enlarging existing files or adding new files in the
tablespace. When adding a new file, first make an entry in the dmconfig.ini,

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-62

specifying the logical file name, the physical file name, and the initial file size in the
appropriate database section. A regular tablespace may contain a maximum of 32767
files, with a maximum cumulative file size of 8 TB. On UNIX platforms, regular

tablespaces may be placed on raw devices.

NOTE For more information on raw devices, see your UNIX system documentation.

Autoextend tablespaces automatically increase in size to hold additional data as

required. They must contain at least one or more data files, and may contain BLOB
files. The difference between regular and autoextend tablespaces is, an autoextend
tablespace automatically extends. A DBA can arrange tables for each type of

tablespace. When adding a file to a regular tablespace, first make an entry in the
dmconfig.ini, specifying the logical file name, physical file name, and initial file size in
the appropriate database section. Autoextend tablespaces do not support raw devices.

DBMaker generates system tablespaces while creating a database. Each database has
one system tablespace, which contains the system catalog tables used to store schema,
security, and status information. The system tablespace is created as an autoextend

tablespace, unless creating a database on a UNIX raw device. System tablespaces
automatically contain one DATA and one BLOB file. System tablespaces may be
converted to regular tablespaces.

Use the SET AUTOEXTEND OFF keywords to change any autoextend tablespace to
a regular tablespace. To restrict the amount of disk space a tablespace will occupy,
change a tablespace from autoextend to regular.

NOTE A file in an autoextend tablespace will grow to fill all available space on a disk
to a maximum of 8 TB.

Use the SET AUTOEXTEND ON keywords to change any regular tablespace to an

autoextend. Change a tablespace from regular to autoextend when the tablespace is
exhausted.

Read-only tablespaces do not allow users to perform any modifications on the

tablespace. However, the read-only tablespace has many advantages:

• Eliminates the need to perform backups. Read-only tablespaces just need a single
backup after being made read only.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-63

• Recovery becomes easier. When the instance is started, DBMaker will take
advantage of the fact that read-only tablespace does not need any media recovery.

• A read only tablespace requires few system resources than an updateable

tablespace (no lock).

Use the SET READ ONLY keywords to change any read-write tablespace to a read-
only tablespace.

Use the SET READ WRITE keywords to change any read-only tablespace to a read-
write tablespace.

Use the ADD DATAFILE keywords to add a new Data or BLOB file to a tablespace.

Files added to a tablespace do not have to be located on the same physical disk. In
UNIX, file can be stored on raw devices. DBMaker writes to raw device files directly
instead of relying on operating system calls, allowing faster access, and performance

improvements over normal files.

As mentioned earlier, files that make up a tablespace are referenced within the
database using logical file names to maintain physical data independence. The logical

file names are mapped to the physical file names in the; dmconfig.ini configuration
file, as shown in the examples. DBMaker will create a new file in the default database
directory specified by the DB_DbDir keyword in the dmconfig.ini unless a different

directory or path is specified.

Logical file names have a maximum length of 128 characters, and may contain
numbers, letters, the underscore character, and the $ and # symbols .The first

character may not be a number. Physical file names have a maximum length,
including drive and path names, of 256 characters. Include any characters and symbols
permitted by the operating system, except spaces.

When adding a new file, specify the file type with the TYPE = DATA and
TYPE=BLOB keywords. The default file type is data.

Also, indicate the file size; in data pages, for a Data file or BLOB frames for a BLOB

file. Data pages can be: 4 KB, 8 KB, 16 KB or 32 KB, while BLOB pages are variable
in size and can range from 8 KB to 256 KB. DBMaker increases the initial size of

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-64

autoextend tablespaces as required. To determine the size of a BLOB frame, check the
DB_BfrSz keyword for a database in the dmconfig.ini file.

tablespace_nameName of the tablespace to modify

file_nameName of the file to add to the tablespace

ALTER TABLESPACE tablespace_name

TYPE= DATA

TYPE = BLOB

ADD DATAFILE file_name

SET AUTOEXTEND OFF

SET READ ONLY

SET READ WRITE

Figure 3-26 ALTER TABLESPACE syntax

 Mapping 1

Before executing example 1, add a line to the dmconfig.ini file to map the logical file

name to the physical file name and indicate the initial file size as 4 KB pages if you
had set the page size to 4 KB. In this example, the file size will be 400 KB.
file1=c:\dbmaker\databases\f1.db 100

 Example 1

The following adds the file f1.db to the ts_new tablespace file f1.db has the logical file
name of file1.
dmSQL> ALTER TABLESPACE ts_new ADD DATAFILE file1 TYPE=DATA;

 Mapping 2

Before executing the commands in example 2, add a line to the dmconfig.ini file to

map the logical file name to the physical file name and indicate the initial file size in

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-65

frames. In this example, the file size will be 4000 KB if the default BLOB frame size of
8 KB is used.
file2=c:\dbmaker\databases\f2.bb 500

 Example 2

The following example changes the tablespace mode from autoextend to regular and
adds file f2.bb to the ts_mode tablespace; file f2.db has the logical file name of file2.
dmSQL> ALTER TABLESPACE ts_mode SET AUTOEXTEND OFF;
dmSQL> ALTER TABLESPACE ts_mode ADD DATAFILE file2 TYPE=BLOB;

 Example 3

The following example changes the tablespace mode from read-write to read-only.
dmSQL> ALTER TABLESPACE ts_mode SET READ ONLY;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-66

3.25 ALTER TABLESPACE DROP
DATAFILE
The ALTER TABLESPACE DROP DATAFILE command drops an empty datafile
from a tablespace. Only users with DBA, SYSDBA or SYSADM security privileges can
execute the ALTER TABLESPACE DROP DATAFILE command.

When dropping a datafile from a tablespace it is imperative that the datafile is empty.
If the datafile contains data then the command will abort and an error message will be
returned to the user. Users are not able to drop a datafile if the datafile is the only one

in the tablespace. It is also important to note that users cannot remove the system
datafile from the system tablespace or the default datafile from the default tablespace.

This command only drops the logical file, so after committing this command, user

need to drop the physical datafiles and remove the information in the
dmconfig.ini manually.

tablespace_name Name of the datafile's tablespace

file_nameName of the datafile to be dropped

ALTER TABLESPACE tablespace_name

file_nameDROP DATAFILE

Figure 3-27 ALTER TABLESPACE DROP DATAFILE syntax

 Example

A user wants to drop datafile tsfile1 from tablespace ts_new.

dmSQL> ALTER TABLESPACE ts_new DROP DATAFILE tsfile1;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-67

3.26 ALTER TRIGGER ENABLE
The ALTER TRIGGER ENABLE command enables or disables an existing trigger on
a table. Only the table owner, a DBA, a SYSDBA or a SYSADM can execute the
ALTER TRIGGER ENABLE command.

A trigger is a database server mechanism that automatically executes predefined
commands in response to specific events. This allows a database to perform complex
or unconventional operations that might not be possible using standard SQL

commands. Since triggers are under the control of the database server, they can ensure
data consistency, regardless of the source. DBMaker will transparently fire the trigger
every time a user or application program generates a trigger event.

A trigger automatically enables when created. To suspend a trigger when testing
database operations that may cause the trigger to fire, use the DISABLE keyword.
Disabling a trigger does not remove it from the database and you can enable it again

with the ENABLE keyword.

trigger_name Name of the trigger to enable or disable

table_name Name of the table associated with the trigger

ALTER TRIGGER trigger_name

DISABLE

ENABLE
table_nameON

Figure 3-28 ALTER TRIGGER ENABLE syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-68

 Example 1

The following disables the trigger Trig_emp on the Employeesinfo table.
dmSQL> ALTER TRIGGER Trig_emp ON Employeesinfo DISABLE;

 Example 2

The following enables the trigger Trig_emp on the Employeesinfo table.
dmSQL> ALTER TRIGGER Trig_emp ON Employeesinfo ENABLE;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-69

3.27 ALTER TRIGGER REPLACE
The ALTER TRIGGER REPLACE command replaces a trigger. Only the table
owner, a DBA, a SYSDBA or a SYSADM can execute the ALTER TRIGGER
REPLACE command.

A trigger is a database server mechanism that automatically executes predefined
commands in response to specific events. This allows a database to perform complex
or unconventional operations that might not be possible using standard SQL

commands. Since triggers are under the control of the database server, they can ensure
data consistency, regardless of the source. DBMaker will transparently fire the trigger
every time a user or application program generates a trigger event.

Specify the name of the trigger when altering or replacing it. Also specify the new
trigger action, action time, event, table, and type.

NOTE The ALTER TRIGGER REPLACE command, only functions on the original

trigger table.

Unlike most database objects, DBMaker does not identify triggers using fully qualified
names, but associates them with tables instead. For this reason all trigger names on the

same table must be unique. The trigger action operates with the same security and
object privileges as the owner of the trigger table, not with the privileges of the user
executing the trigger event.

The BEFORE and AFTER keywords specify when the database server should perform
the trigger action relative to the trigger event and the trigger action time. The
BEFORE keyword instructs the database server to perform the trigger action before

the trigger event. The AFTER keyword instructs the database server to perform the
trigger action after the trigger event.

The INSERT, DELETE, and UPDATE keywords specify the event that fires a

trigger. There are some differences in the use of the INSERT and DELETE keywords,
and the UPDATE keyword. The INSERT keyword instructs a trigger to fire whenever
a row is inserted into a table. The DELETE keyword instructs a trigger to fire

whenever deleting a row from a table. The UPDATE keyword specifies a trigger to fire

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-70

after updating any column in a table. Also, use UPDATE OF to specify a column list
to fire a trigger after updating specific columns.

NOTE A unique column name can only be used in one UPDATE trigger in a table.

The ON keyword specifies the name of the table to replace the trigger with on the
trigger table. The trigger table must be a permanent table in the database. A trigger
cannot be created on a temporary table, view, or synonym.

trigger_nameName of the trigger to replace

column_nameName of the column to create the new trigger on

table_nameName of the table to create the new trigger on

sql_statementStatement to execute when the trigger fires

Figure 3-29 ALTER TRIGGER REPLACE syntax

For Each Row Clause

The REFERENCING keyword specifies an alias for the OLD and NEW keywords.
When replacing a row trigger, indicate in the trigger action whether referencing a
value of a column, before or after the trigger fires. Use the REFERENCING keyword

in place of the OLD and NEW keywords when tables named OLD and NEW already
exist.

ALTER TRIGGER

UPDATE
OF

ON

cloumn_name

trigger_name
BEFORE

AFTER

(sql_statement)

DELETE

INSERT

,

table_name

for _each _statement_clause

for_each_ row_clause

REPLACE WITH

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-71

The FOR EACH ROW keywords instructs a trigger to fire once for each row the
trigger event modifies. Triggers defined using the FOR EACH ROW keyword do not
fire if the statement firing the trigger does not process rows.

The WHEN keyword specifies rows, which satisfy the search condition, to fire a
trigger. The WHEN clause is evaluated for each row the trigger event modifies. If the
search condition is true, the trigger fires for that row. If the search condition is false,

the trigger does not fire. The result of the WHEN condition only affects the execution
of the triggered action, it has no effect on the statement that fires the trigger.

old_name Alias for referencing the values as they existed in the trigger table

before the trigger action fires

new_name Alias for referencing the values as they exist in the trigger table
after the trigger action fires

search_condition Conditions a row must meet for a trigger to fire

REFERENCING

OLD AS old_name

NEW AS new_name

OLD AS old_name

FOR EACH ROW
WHEN (search_condition)

NEW AS new_name

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-72

Figure 3-30 For Each Row Clause syntax

For Each Statement Clause

The FOR EACH STATEMENT keywords specify a trigger fire only once for each

statement that fires the trigger. Triggers defined using the FOR EACH
STATEMENT keywords fire even if the statement that fires the trigger does not
process any rows.

The statement that the trigger executes when it fires is known as the trigger action. The
trigger action may be an INSERT, UPDATE, DELETE, or EXECUTE
PROCEDURE statement. Only built-in functions that have no argument PI(),

NOW(), or USER() can be used when specifying the trigger action. Stored
procedures executed by a trigger cannot contain any COMMIT, ROLLBACK, or
SAVEPOINT transaction control statements.

Create multiple triggers for each trigger event on the trigger table by using the trigger
action time; BEFORE and AFTER keywords, in combination with the trigger type;
FOR EACH ROW and FOR EACH STATEMENT keywords. For example, you can

combine the trigger action time and the trigger type to create four triggers for the
INSERT trigger event: BEFORE/FOR EACH STATEMENT, BEFORE/FOR
EACH ROW, AFTER/FOR EACH ROW, and AFTER/FOR EACH

STATEMENT.

NOTE Also supported by the UPDATE and DELETE trigger events.

When using UPDATE OF instead of UPDATE, one trigger for each column in the

table for each trigger action time/trigger type combination can be created. A table with
four columns can have four UPDATE OF triggers for each: BEFORE/FOR EACH
STATEMENT, BEFORE/FOR EACH ROW, AFTER/FOR EACH ROW, and

AFTER/FOR EACH STATEMENT combination. When using UPDATE OF to
specify a trigger, UPDATE cannot be used to create a trigger on that table. When you
replace a trigger with a new one, no column already used in another UPDATE OF

trigger may be specified.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-73

FOR EACH STATEMENT

Figure 3-31 For Each Statement Clause syntax

 Example 1

Originally defined as a FOR EACH ROW trigger, this command will replace it with a

FOR EACH STATEMENT trigger by altering the Trig_emp trigger on the
Employeesinfo table.
dmSQL> ALTER TRIGGER Trig_emp REPLACE WITH
 BEFORE UPDATE ON Employeesinfo
 FOR EACH ROW
 (INSERT INTO NameChange VALUES (OLD.FName, OLD.LName,
 NEW.FName, NEW.LName));

 Example 2

This command will replace the UPDATE trigger event with an INSERT trigger event
by altering the Trig_emp trigger on the Employeesinfo table from example 1.
dmSQL> ALTER TRIGGER Trig_emp REPLACE WITH
 AFTER INSERT ON Employeesinfo
 FOR EACH ROW
 (INSERT INTO NameChange VALUES (OLD.FName, OLD.LName,
 NEW.FName, NEW.LName));

 Example 3

This command will replace the INSERT statement with an EXECUTE

PROCEDURE statement by altering the Trig_emp trigger on the Employeesinfo
table from example 2.
dmSQL> ALTER TRIGGER Trig_emp REPLACE WITH
 AFTER INSERT ON Employeesinfo
 FOR EACH ROW
 (EXECUTE PROCEDURE LogTime);

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-74

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-75

3.28 BEGIN BACKUP
The BEGIN BACKUP command places a database in a special state that allows
backing up of all files without requiring other users to disconnect or shut down the
database. Only users with DBA, SYSDBA or SYSADM security privileges can execute

the BEGIN BACKUP command.

Media failure is the failure of the online secondary or auxiliary storage of a computer
system. The most common secondary and auxiliary storage devices are hard disks.

Media failures are usually caused by physical trauma to the disk itself: head crash, fire,
earthquake, exposure to high vibration, or g-forces outside its physical operating
limits.

When a media failure occurs, one or more files can be physically damaged. Provide
archiving or backup to successfully restore a database. Create backups of database files
periodically, to restore the database in the event of a media failure. There are several

different types of backups.

An online backup is can be performed while a database is running. The Database
Administrator does not have to shut down the database, and users do not need to

disconnect. Online backups are more convenient for users, since no action is required
on their part. A DBMS must provide the capability to back up a database online.

An offline backup is performed after a database has been shut down. The Database

Administrator must schedule a time to shut down the database, and notify all users so
they can disconnect before the shut down. Offline backups can be inconvenient for
users, since they must remember to complete all active transactions and disconnect

from the database. A DBMS does not need to provide the capability to back up a
database offline.

A full backup creates a copy of all data and Journal files, providing a copy of the entire

database system at one point in time. Full backups archive the entire database and
require a large amount of storage space, but can restore the database quickly.

A differential backup is based on the latest full backup of the data. This is known as

the base of the differential, or the differential base. A differential backup contains only

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-76

the data that has changed since the differential base was created. A differential base is
typically used for several successive differential backups. During a restore operation,
the full backup and its corresponding differential backup combine to produce a fully

restored database.

An incremental backup creates a copy of only the Journal files that have changed since
the last full backup. These files provide a copy of the changes made to the database

since the last full backup. Incremental backups archive only Journal files and require
only a small amount of storage space, but need more time to restore the database.

DBMaker supports five types of backups: offline full backups, online full backups,

online differential backups, online incremental backups and online incremental to
current backups. Before performing an incremental backup, perform either an offline
full backup or an online full backup. If full backup is not performed first, you may be

unable to restore the database in the event of a media failure.

To perform an offline full backup, make sure all users are disconnected and shut down
the database. If an error occurs while the database is shutting down, completing the

backup operation or restoring the database may be impossible. Backup all Data,
BLOB, and Journal files. Using an offline full backup can restore a database up to the
point in time of shutting down.

To perform an online full backup, start the database in NON-BACKUP, BACKUP-
DATA, or BACKUP-DATA-AND-BLOB mode. To begin the backup, issue the
BEGIN BACKUP command. Back up all Data and BLOB files. After these files have

been backed up, issue the END BACKUP DATAFILE command. Then back up all
Journal files. Next, issue the END BACKUP JOURNAL command to complete the
backup and return the database to normal operation. Using an online full backup can

restore a database from, the point in time the END BACKUP DATAFILE command
was executed to and the point in time the currently active Journal file was copied.

To perform a differential backup, start the database in NON-BACKUP, BACKUP-

DATA, or BACKUP-DATA-AND-BLOB mode. A full backup must first exist before
a differential backup is created. A differential base must exist before a differential
backup is created. DBMaker's differential backup only includes data files (e.g., *.DB

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-77

and *.BB), not journal files. This is because journal files changed too frequently. So,
when doing a differential backup, only useful journal blocks are copied.

To perform an online incremental backup or an online incremental backup to current,

start the database in either BACKUP-DATA or BACKUP-DATA-AND-BLOB
mode.

Only users that have read permissions on the database files from the operating system

can perform an offline full backup, and only users with DBA, SYSDBA or SYSADM
security privileges can perform online backups. In addition, only one user at a time
can perform an online backup.

Abort an online backup at any time by issuing the ABORT BACKUP command.
After this command executes, you will not be able to use the files from this backup to
restore the database.

Perform an online full backup and an online differential backup at any time with the
database in any backup mode, including NON-BACKUP mode. Incremental online
backups may only be performed when the database is running in BACKUP-DATA or

BACKUP-DATA-AND-BLOB mode.

The backup mode indicates the type of information DBMaker backs up during an
online incremental backup. Change the backup mode online or offline, using one of

three different methods: offline with the DB_BMode keyword in the dmconfig.ini
configuration file, online with the SQL SET command at the dmSQL command
prompt, or online with the Server Manager utility provided with DBMaker.

NON-BACKUP mode provides no protection for data inserted or updated since the
last full backup. In this mode, a database cannot perform online incremental backups.
A database can use the Journal to fully recover from an instance failure, but a media

failure may result in loss of data. Journal blocks not in use by an active transaction can
be reused immediately after a checkpoint, but once they are overwritten, the database
can only be restored to the point in time of the last full backup.

To set the backup mode to NON-BACKUP using the DB_BMode keyword, open
the dmconfig.ini file using any text editor and change the value of DB_BMode to 0.
You may use the SET BACKUP OFF command during an online full backup to set

the backup mode to NON-BACKUP. This command must be executed after the

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-78

BEGIN BACKUP command, but before the END BACKUP JOURNAL command,
and only during an online full backup.

BACKUP-DATA mode provides protection for data, excluding BLOB data that was

added or changed since the last full backup. In this mode, DBMaker can perform an
online incremental backup, but since changes to BLOB data are not recorded in the
Journal, they are not stored in the backup Journal files. Any records containing BLOB

data added or changed since the last full backup will have the BLOB data replaced
with a NULL value. After restoring the database, manually update all records with the
new BLOB data. A database can use the Journal to fully recover from an instance

failure and partially recover from media failure.

To set the backup mode to BACKUP-DATA using the DB_BMode keyword, open
the dmconfig.ini file using any text editor and change the value of DB_BMode to 1.

Use the SET DATA BACKUP ON command during an online full backup to set the
backup mode to BACKUP-DATA. This command must be executed after the
BEGIN BACKUP command, before the END BACKUP JOURNAL command, and

during an online full backup.

BACKUP-DATA-AND-BLOB mode provides protection for all data, including
BLOB data that was inserted or updated since the last full backup. In this mode,

DBMaker can perform an online incremental backup, and all data will be stored in
the backup Journal files. A database can use the Journal to fully recover from an
instance failure, and can fully recover from a disk failure. Use the last backup to

completely restore the database to the point in time of the media failure, including all
BLOB data. Journal blocks not in use by an active transaction can only be reused after
a checkpoint has taken place and the Journal file has been backed up.

To set the backup mode to BACKUP-DATA-AND-BLOB using the DB_BMode
keyword, open the dmconfig.ini file using a text editor and change the value of
DB_BMode to 2. Use the SET BLOB BACKUP ON command during an online full

backup to set the backup mode to BACKUP-DATA-AND-BLOB. This command
must be executed after the BEGIN BACKUP command, before the END BACKUP
JOURNAL command, and only during an online full backup.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-79

BEGIN

BACKUP

TO CURRENT
INCREMENTAL BACKUP

Figure 3-32 BEGIN BACKUP syntax

 Example

The following shows the steps involved in a full online backup. To begin, issue the
BEGIN BACKUP command to notify DBMaker that a full backup is in progress.

Then, copy all data and BLOB files to the backup location using operating system
commands. Next, issue the END BACKUP DATAFILE command. Then, use
operating commands to copy all Journal files to the backup location. Finally, issue the

END BACKUP JOURNAL command. On completion, this command returns the
database to normal operation.
BEGIN BACKUP
 Copy data and BLOB files to backup location using OS commands
 Change backup mode if desired
 Abort the backup if desired
END BACKUP DATAFILE
 Copy Journal files to backup location using OS commands
 Change the backup mode if desired
 Abort the backup if desired
END BACKUP JOURNAL

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-80

3.29 BEGIN WORK
The BEGIN WORK command is an optional command used in a script file to
document the beginning of a transaction; DBMaker ignores this command.

BEGIN WORK

Figure 3-33 BEGIN WORK syntax

 Example

The following illustrates how the BEGIN WORK command can be used in a script

file to document the beginning of a transaction; the text may be located anywhere
within the script file.
BEGIN WORK
 ...
 SQL Command
 SQL Command
 ...
COMMIT WORK

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-81

3.30 CHECK

The CHECK command checks the database objects specified for data consistency.

You may want to check database consistency if queries are returning inconsistent or
erroneous results, or receiving frequent or unusual error messages. Only the owner of
the object, a DBA, a SYSDBA or SYSADM may execute the CHECK command.

DBMaker checks the consistency of a database, indexes, tables, files, tablespaces, and
the system catalog. Checking the consistency of database objects can be time and
resource consuming. Use the CHECK command only when necessary, and try to

schedule its use for off-peak times when inconveniences to users are minimized.

When checking a database object, DBMaker first checks the system catalog tables to
ensure all catalog information is valid and correct. If any errors are found in the system

catalogs, checking stops immediately. If the system catalog has errors, the database
may have serious consistency errors. Then DBMaker checks the physical structure and
data integrity of the object and any related objects. When checking an object,

DBMaker also checks, all objects contained in or related to the original object. Also
checks the indexes, data pages, files, and tables.

Some types of errors can be repaired. Dropping the index and rebuilding it can usually

correct most problems. It is also possible to correct a corrupted table by unloading all
records in the table, dropping the table, then recreating the table, and reloading all
data.

If a database does have consistency errors, immediately back up the database,
including all data and Journal files. DBMaker can fix some types of consistency errors
after recovering from a crash. To engage DBMaker crash recovery routines, shut down

and restart the database. After the database restarts, execute the CHECK command
again to see if the error has been corrected.

If any inconsistency still exists, contact the CASEMaker customer service.

CASEMaker customer support representatives will assist you with repairing the
database.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-82

NOTE For information on how to contact a CASEMaker customer service
representative in your area, see your license agreement.

tablespace_nameName of the tablespace to check

file_nameName of the file to check

table_nameName of the table to check

index_nameName of the index to check

CHECK

DB
CATALOG

TABLE table_name
FILE file_name

TABLESPACE tablespace_name

INDEX index_name

Figure 3-34 CHECK syntax

 Example 1

The following command checks the consistency of data in the Customers table.
dmSQL> CHECK TABLE Customers;

 Example 2

The following command checks the consistency of data in index idxCustNum of the
Customers table; when specifying an index name, specify the table name.
dmSQL> CHECK INDEX Customers.idxCustNum;

 Example 3

The following command checks the consistency of Data pages or frames in a BLOB

file in the customer_data file.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-83

dmSQL> CHECK FILE customer_data;

 Example 4

The following command checks the consistency of database objects in the specified

tablespace and may include files, tables, data pages, and data in all tables in the ts_new
tablespace.
dmSQL> CHECK TABLESPACE ts_new;

 Example 5

The following command checks the consistency of the database system catalogs.
dmSQL> CHECK CATALOG;

 Example 6

The following command checks the consistency of all database objects.
dmSQL> CHECK DB;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-84

3.31 CHECKPOINT
The CHECKPOINT command forces DBMaker to take a checkpoint. Take a
checkpoint if database activity is very high or you infrequently back up or restart the
database. Only users with DBA, SYSDBA or SYSADM security privileges can execute

the CHECKPOINT command.

A checkpoint event brings the database to a clean state. DBMaker writes all Journal
records and all dirty data pages in memory buffers to disk, and reclaims Journal blocks
that are no longer required for backup or recovery purposes. DBMaker can reclaim
Journal blocks that contain non-active transactions completed before the start of the
oldest active transaction.

Startup time after an instance failure is reduced after taking a checkpoint. DBMaker
writes the time of the last checkpoint and a list of all transactions active at the time of
the checkpoint to the Journal file header. During database recovery, DBMaker uses

this information to determine which transactions should be undone, redone, and
ignored.

DBMaker automatically takes a checkpoint when a database starts or terminates when

performing an online backup, or when the Journal is full. This may require a
significant amount of time to complete, depending on the size and number of
transactions since the last checkpoint. Any transactions that are active when an

automatic checkpoint occurs must wait until the checkpoint operation completes.
DBMaker will also abort the current transaction if the Journal is full and issuing a
checkpoint cannot reclaim enough Journal space to complete the transaction. In this

situation, redo all commands in the aborted transaction.

To avoid any unnecessary delays in transaction processing, periodically take manual
checkpoints using the CHECKPOINT command. Periodic manual checkpoints

reduce the amount of time required to start, terminate, and back up a database, time
transactions wait for checkpoint operations to complete, and the possibility of a full
Journal. The optimal time interval between manual checkpoints depends on the

activity frequency in the database.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-85

CHECKPOINT

Figure 3-35 CHECKPOINT syntax

 Example

The following example forces the system to take a checkpoint.
CHECKPOINT

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-86

3.32 CLOSE DATABASE LINK
The CLOSE DATABASE LINK command closes links to a remote database. Use this
command to close a single link, or multiple links at the same time. Any user with an
active link to a remote database can execute the CLOSE DATABASE LINK

command.

A database link creates a connection to a remote database, providing access to remote
data from the local database. Links provide additional security information. Links

enable a user to connect to a remote database with a different user name. Alternately,
use the public link to connect to a remote database without an account.

When executing the CLOSE DATABASE LINK command and specifying a link

name, DBMaker closes the link to the remote database if it no active transactions
exist. When executing the CLOSE DATABASE LINK command and specifying a
remote database, DBMaker closes all links that connect to the remote database. If a

link has an active transaction, it remains open and DBMaker returns an error. Wait
until the transaction has finished and retry closing the link.

The NONACTIVE keyword closes all links to a remote database that are not being

used by an active transaction. If a transaction is using a link when you execute the
CLOSE DATABASE LINK command using the NONACTIVE keyword, the link
remains open. To close this link, wait until the transaction is finished and try closing it

again.

The ALL keyword closes all links to a remote database. If a transaction is using a link
when you execute the CLOSE DATABASE LINK command using the ALL keyword,

the link remains open and DBMaker returns an error. To close this link, wait until the
transaction is finished.

link_nameName of the link to a remote database to close

remote_database_name…close all links to the remote database remote_database_name

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-87

CLOSE DATABASE LINK
remote_database_name

NONACTIVE

link_name

ALL

Figure 3-36 CLOSE DATABASE LINK syntax

 Example 1

The following closes the FieldLink.
dmSQL> CLOSE DATABASE LINK FieldLink;

 Example 2

The following closes all links to the remote database identified in the local
dmconfig.ini file as FieldOffice.
dmSQL> CLOSE DATABASE LINK FieldOffice;

 Example 3

The following closes all links to not being used by an active transaction.
dmSQL> CLOSE DATABASE LINK NONACTIVE;

 Example 4

The following closes all links unless a link is being used by an active transaction,

DBMaker will return an error and the link will remain open.
dmSQL> CLOSE DATABASE LINK ALL;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-88

3.33 COMMIT WORK
The COMMIT WORK command commits the current transaction. DBMaker
automatically starts a new transaction after execution of the COMMIT WORK
command. Any user with CONNECT or higher security privileges can execute the

COMMIT WORK command.

A transaction, traditionally defined as a logical unit of work, or one or more
operations on a database that need to complete together in order to leave the database

in a consistent state. Transactions are self-contained and must either complete
successfully, change the data, or fail and leave the data unchanged.

For example, suppose you store two different kinds of information in the database

records of shipments sent to customers and records of items currently in stock,
including quantity of items. When an item ships to a customer, the item and the
quantity shipped are added to the shipment list. The quantity shipped must also be

subtracted from the items currently in stock. If both of these operations are not
completed together as a logical unit of work, the database will be in an inconsistent
state. The quantity of items in stock will be too high; items shipped and not

subtracted from items in stock, or too low; items subtracted from items in stock and
not shipped. Both of these operations together make up a single transaction, and must
complete successfully or both will fail.

If a transaction completes successfully and changes the data, it has been committed. If
a transaction fails and leaves the data unchanged, it has been rolled back.

When executing the COMMIT WORK command, DBMaker will write all changes

made by commands in the current transaction to the database. The COMMIT
WORK command only writes changes for the current transaction. The COMMIT
WORK command is not required if the connection to a database is running in

AUTOCOMMIT mode.

AUTOCOMMIT mode controls when DBMaker will commit a transaction. When
AUTOCOMMIT mode is on, each command is treated as a separate transaction.

Pressing the Enter key to execute a command automatically commits the command if

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-89

it completes successfully, or rolls it back if an error occurs during execution. When
AUTOCOMMIT mode is OFF, all commands between successive COMMIT
WORK commands form a single transaction. Executing the COMMIT WORK

command commits any changes made in the transaction, and executing the
ROLLBACK WORK command rolls back all changes.

In the event of a database crash, DBMaker will automatically roll back any

transactions that have not been committed. If the changes made in the rolled back
transactions reflected in the database, redo all commands in these transactions when
the database restarts.

COMMIT

WORK

Figure 3-37 COMMIT WORK syntax

 Example

The following example commits the changes made by all commands executed between
the first and second COMMIT WORK commands with AUTOCOMMIT mode
turned off.
COMMIT WORK
 ...
 SQL Command
 SQL Command
 ...
COMMIT WORK

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-90

3.34 CREATE COMMAND
The CREATE COMMAND creates a new stored command. Use stored commands
to quickly and conveniently execute frequently used SQL data-manipulation
statements. To execute the CREATE COMMAND, only users with the RESOURCE

or higher security privileges, and all security and object privileges necessary to execute
the SQL statement may use this command.

A stored command is a compiled SQL data-manipulation statement permanently

stored in the database in executable format. Repeatedly execute the stored command
without waiting for DBMaker to compile and optimize the command. Stored
commands are similar to stored procedures except; they can only contain a single

command and cannot contain program logic.

When creating a stored command, specify the command name and a valid SQL data-
manipulation statement of SELECT, INSERT, UPDATE, or DELETE. Use host

variables as placeholders for column values in the SQL statement. This permits
assigning actual values to the column when executing he command. To use host
variables in a stored command, replace any data or column value with a question mark

(?).

When executing a stored command that has host variables, use result constants from
built-in functions, the NULL keyword, the DEFAULT keyword, or another host

variable. Only use built-in functions that have no argument, such as RAND(), PI(),
CURDATE(), and NOW(), when providing a value for a host variable. To use
NULL value for the host variable, the value represented by the host variable must be

capable of accepting the NULL values. The number of parameters provided when
executing a stored command must equal the number of host variables in the command
definition.

When dropping a table or a column that is referenced by a stored command or
altering a table and modify the column definition using the BEFORE and AFTER
keywords, the stored command becomes invalid and cannot be used again. Altering a

table and adding a column without using the BEFORE and AFTER keywords has no

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-91

impact on a stored command. Drop an invalid stored command to remove it from the
database.

Stored command names must be unique in the database. Stored command names have

a maximum length of 128 characters and may contain numbers, letters, underscore
characters and $ and # symbols. The first character may not be a number.

OR REPLACE: specify OR REPLACE to re-create the stored command that already

exists, that is to say, you can use this clause to change the definition of an existing
stored command.

command_name Name of the new stored command to create

select_statement A valid SELECT statement

insert_statement A valid INSERT statement

update_statement A valid UPDATE statement

delete_statement A valid DELETE statement

CREATE
OR REPLACE

COMMAND AS

insert_statement

command_name

select_statement

delete_statement

update_statement

Figure 3-38 CREATE COMMAND syntax

 Example 1

The following creates a stored command named sc_select and selects all employees in
the Employeesinfo table whose last name begins with the letter 'A'.
dmSQL> CREATE COMMAND sc select AS SELECT * FROM Employeesinfo WHERE LastName
LIKE 'A%';

_

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-92

 Example 2

To create a stored command named sc_update that uses host variables to update the
Manager column in the Employeesinfo table, you can use the following syntax:
dmSQL> CREATE COMMAND sc update AS UPDATE Employeesinfo SET Manager = ? WHERE
Manager = ?;

or
dmSQL> CREATE COMMAND OR REPLACE sc_update AS UPDATE Employeesinfo SET Manager
= ? WHERE Manager = ?;

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-93

3.35 CREATE DATABASE LINK
The CREATE DATABASE LINK command creates a new public or private link to a
remote database. Database links permits a user to access objects in remote databases
the same way as objects a local database. Only a DBA, a SYSDBA or a SYSADM may

execute the CREATE DATABASE LINK command to create a public link to a
database. Only users with CONNECT or higher security privileges may execute the
CREATE DATABASE LINK command to create a private link to a database.

A database link creates a connection to a remote database, providing access to remote
data a local database. Although you can directly identify remote databases, links
provide additional benefits since they also contain security information. This permits

connecting to a remote database with a different user name or an account using a
public link.

Provide the link name and the remote database name when creating a database link.

The dmconfig.ini file for both the local and remote database must contain a database
configuration section for the opposite database. This database configuration section
must contain the IP address and the port number of the opposite database server.

Enter the IP address using the DB_SvAdr keyword and the port number using the
DB_PtNum keyword.

The PUBLIC/PRIVATE keywords are optional. These keywords specify the type of

database link to create, public or private. Public links are available to all users in a
database. Private links are available only to the user that creates them. Only a DBA, a
SYSDBA or a SYSADM can create a public database link, while any user can create a

private database link. If both a public and private link exists with the same name,
DBMaker uses the private link instead of the public link. DBMaker creates a private
link by default.

The IDENTIFIED BY keywords are optional. This keyword specifies the user name
and password to use when connecting to the remote database. The user name
provided must be an existing user in the remote database with the CONNECT or

higher security privileges. When the link is used to connect to the remote database, the
operations a user can perform depend on the security and object privileges granted to.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-94

If a user name is not specified when connecting to the remote database, DBMaker uses
the current user name in the local database.

Link names have a maximum length of 128 characters, and may contain numbers,

letters, the underscore character, and the symbols $ and #. The first character may not
be a number.

link_nameName of the link to create to a remote database

remote_db_nameName of the remote database to connect to

user_nameName of a user in the remote database with CONNECT or
higher security privileges

passwordPassword of the user in the remote database

CREATE link_nameDATABASE LINK

user_nameIDENTIFIED BY
password

CONNECT TO remote_db_name

PRIVATE

PUBLIC

Figure 3-39 CREATE DATABASE LINK syntax

 Example 1

The following example creates a public database link named FieldLink to the remote
FieldOffice database. The user creating the link must have DBA, SYSDBA or

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-95

SYSADM security privileges in the local database and must have the same user name
in both the local and remote databases. Using this link automatically connects the user
to the remote database with the same user name as the link creator. It provides the

security and object privileges granted to this user in the remote database.
dmSQL> CREATE PUBLIC Database LINK FieldLink CONNECT TO FieldOffice;

 Example 2

The following example creates a public database link named FieldLink to the remote
FieldOffice database. The user creating the link must have DBA, SYSDBA or
SYSADM security privileges in the local database. Using this link automatically

connects the user to the remote database with the user name LinkUser and password
dil3ryx9. It provides the security and object privileges granted to this user.
dmSQL> CREATE PUBLIC Database LINK FieldLink CONNECT TO FieldOffice
 IDENTIFIED BY LinkUser dil3ryx9;

 Example 3

The following creates a private database link named FieldLink to the remote
FieldOffice database. The user creating the link must the same user name in both the

local and remote databases. Using this link automatically connects the user to the
remote database with the same user name as the local database. It uses the security and
object privileges granted to the user account in the remote database. If there is a public

link with the same name, the private link is used instead.
dmSQL> CREATE PRIVATE Database LINK FieldLink CONNECT TO FieldOffice;

 Example 4

The following creates a private database link named FieldLink to the remote
FieldOffice database. Using this link automatically connects a user to the remote
database with the user name Vivian and password a23456. It provides the security and

object privileges granted to this user. This is useful if you have a different user name in
the local and remote databases. If there is a public link with the same name, the
private link is used instead.
dmSQL> CREATE PRIVATE Database LINK FieldLink CONNECT TO FieldOffice
 IDENTIFIED BY Vivian a23456;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-96

3.36 CREATE DOMAIN
The CREATE DOMAIN command creates a new domain with an optional default
value and optional integrity constraints. Any user with RESOURCE or higher security
privileges can execute the CREATE DOMAIN command.

A domain is a user-defined data type that brings together a data type, a default value,
and a value constraint. Use a domain in the column definition of CREATE TABLE or
ALTER TABLE ADD COLUMN statements in place of a data type to define the set

of valid values entered in the column.

For example, create a domain based on the DATE data type with a default value of
NOW() that only accepts dates between January 1st, 1900 and today. Any column

created using this domain will inherit these characteristics, allowing consistent
definitions for columns that contain the same data type without specifying default
values and value constraints each time.

When creating a domain, specify the data type and optionally specify a default value
and a value constraint. Any data type may be used that DBMaker supports when
creating a domain, except the SERIAL data type. Specifies default values and value

constraints using the DEFAULT and CHECK keywords.

Domains can be created with the TEXT CONVERTER syntax in the CREATE
DOMAIN clause. DBMaker uses the TEXT CONVERTER function to convert the

CLOB, NCLOB, BLOB, and FILE data to pure text for creating text indexes and
PURETEXT() UDF when the TEXT CONVERTER syntax on the domain is
specified. The TEXT CONVERTER function-name should contain one argument of

a BLOB related type. The return type must be CLOB or NCLOB data types or an
error is returned. At most 32767 domains can be created using the TEXT
CONVERTER syntax.

The DEFAULT keyword is optional. This keyword specifies a default value inserted
into a column if no value is provided when inserting a new row. Constants, results
from built-in functions, or the NULL keyword may be used as the default value. Only

use built-in functions that have no argument like PI(), NOW(), or USER(), when

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-97

creating a domain. If using the NULL keyword as the DEFAULT value, the column
cannot be defined with the NOT NULL keyword.

The CHECK keyword is optional. This keyword is used to specify a range of

acceptable values (constraints) that may be entered in a column. The expression that
specifies the range of acceptable values may be any expression that evaluates to true or
false. The VALUE keyword may be used in the expression in conjunction with the

CHECK keyword to represent the value of the column. If an SQL statement does not
satisfy the CHECK conditions, it will not be processed.

Specifying the default values and value constraints using domains gives the same

results as specifying them in a standard column definition. However, default values
provided in the column definition will override the default value of the domain and
the column definition can add value constraints in addition to those of the domain.

Ensure the value constraints specified in a column definition do not conflict with the
value constraints provided by the domain. DBMaker does not check for conflicting
constraints when creating a column based on a domain. The conflicting constraints

may prevent inserting or updating some or all of the data.

Domain names have a maximum length of 128characters, and may contain numbers,
letters, the underscore character, and the symbols $ and #. The first character may not

be a number.

NOTE Only functions that do not take an argument may be used when creating
domains.

domain_name Name of the domain that to create

data_type Data type to use for the domain

constant Constant value to be used if no value is inserted

function_name Built-in function to be used if no value if inserted

constraint_name Name of constraint to be applied to domain

boolean_expression Any expression that evaluates to true or false

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-98

CREATE DOMAIN domain_name
AS

DEFAULT
constant

NULL
function_name CHECK boolean_expression

data_type

TEXT CONVERTER function-name

Figure 3-40 CREATE DOMAIN syntax

 Example 1

The following creates a domain named AllNum based on the INTEGER data type.
dmSQL> CREATE DOMAIN AllNum AS INTEGER;

 Example 2

The following creates a domain named AllNum based on the INTEGER data type
that has a default value of 0.
dmSQL> CREATE DOMAIN AllNum AS INTEGER DEFAULT 0;

 Example 3

The following creates a domain named AllNum based on the INTEGER data type,
which does not allow NULL values.
dmSQL> CREATE DOMAIN AllNum AS INTEGER CHECK VALUE IS NOT NULL;

 Example 4

The following creates a domain named PosNum based on the INTEGER data type,
which only allows values from 0 to 100, and has a default value of 0.
dmSQL> CREATE DOMAIN PosNum AS INTEGER DEFAULT 0 CHECK VALUE >= 0 AND VALUE <=
100;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-99

 Example 5

The following creates a domain named ValidDate based on the DATE data type,
which uses the NOW() function as both the default value and one of the value
constraints.
dmSQL> CREATE DOMAIN ValidDate AS DATE
 DEFAULT NOW()
 CHECK VALUE > '01/01/1900' AND VALUE <= NOW();

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-100

3.37 CREATE GROUP
The CREATE GROUP command creates a new user group. Users in this group gain
all object privileges granted to the group. Only users with SYSADM, SYSDBA or
DBA security privileges can execute the CREATE GROUP command.

Groups simplify the management of object privileges in a database with a large
number of users. Use a group to collect all users that require the same object
privileges. Any object privileges granted for the group are automatically granted to all

members in the group. After creating a new group, add users to the group using the
ADD TO GROUP command.

DBMaker also provides support for nested groups. Add a group as a member in

another group, provided there are no circular references from the group being added.
For example, you cannot add group1 as a member of group2 if group2 is already a
member of group1, and cannot add group 1 as a member of itself. Add a group, as a

member in another group is the same as adding a user.

The group name cannot be SYSTEM, PUBLIC, or GROUP, or the same as any
existing user or group names. Group names have a maximum length of 128 characters

and may contain letters, numbers, underscore characters, and symbols $ and #. The
first character may not be a number.

group_nameName of the new group to create

CREATE GROUP group_name

Figure 3-41 CREATE GROUP syntax

 Example

The following creates a new group named Manager.
dmSQL> CREATE GROUP Manager;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-101

3.38 CREATE HASH INDEX
Hash indexes can only be created on memory tables. The benefit of a hash index is
that users have very quick access to data stored in the hash index. Hash indexes also
improve equal expression and equal join performance. To create a hash index on a

table users can use the CREATE HASH INDEX index_name ON table_name
(column_name, …) [bucket n]; where index name is the name of the hash index being
created, table name is the name of the memory table, column name is the name of the

column in the memory table being effected. This value cannot specify asc/desc
columns. Bucket n sets the array size for the hash table being created.

index_name Name of the new hash index to create

table_name Name of the memory table you are creating the index on

column_name Name of the column(s) created on the hash index

bucket n sets the array size

ON table_name
,

column_name
)

CREATE index_nameINDEXHASH

[bucket n]

(

Figure 3-42 CREATE HASH INDEX syntax

 Example

With the memory table created, a hash index idx1, can be made on memory table
tb_mem, using columns c01_int and c02_char with an array size of 31.

dmSQL> CREATE HASH INDEX idx1 ON tb_mem (c01_int, c02_char) BUCKET 31;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-102

3.39 CREATE INDEX
The CREATE INDEX command creates a new index on an existing table. Use
indexes to increase the performance of queries by quickly locating specific rows in a
table without examining the entire table. Only the table owner, a DBA, or a user with

the INDEX privilege may execute the CREATE INDEX command on a table.

An index is a mechanism that provides fast access to specific rows in a table based on
the values of one or more columns from the table (known as the key). Indexes contain

the same data as the key columns, but the data is structured and sorted to make
retrieval much faster. Once an index is created on a table, its operation is transparent
to users of the database. The DBMS uses the index to improve query performance

whenever possible.

When creating an index specify the index name, the name of the table creating the
index on and the name of the key columns in the table. Create an index on one or

more columns, up to a maximum of 32 columns. Any column in a table can be used
in an index. DBMaker limits indexes to a maximum record size of 4,000 bytes.

Creating indexes for frequently used expressions will improve query performance. For

XML columns, create the index on XML UDF: extract() and extractvalue() to speed
up xpath queries. Please note the primary differences between extract() and
extractvalue(). Extract() allows multi-value, one value, or zero value results, however,

asc/desc and unique index are not allowed. Extractvalue() only allows UDF results
having one value or zero values. If the UDF result is multi-value, then the create index
fails for the existing tuple and the insert data fails for the newly inserted tuple,

however, asc/desc and unique index are allowed with extractvalue().

Filtered Indexes (Conditional Index) is an index with the WHERE clause. A filtered
index is an optimized index especially suited to cover queries that select from a well-

defined subset of data. That is to say, Filtered Index is inserted into index page before
filter, filtered index’s data not include all rows, it can be partial of rows defined by
filter condition (WHERE clause). It uses a filter predicate to select a portion of rows

in the table. A well-designed filtered index can improve query performance as well as
reduce index maintenance and storage costs compared with full-table indexes.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-103

The WHERE clause can be any combination of the following predicate, includes:

• any columns of the table

• constant values

• comparison: =, >, >=, <, <=, !=. ex: c1>=3

• like, ex: c3 like 'abc'

• is null, is not null. ex: c4 is null

• in list, ex: c5 in (1,3,5)

• operator: +, -, *, / : ex: c1+c2>5

• UDF, ex: abs(c6)>5

• blob operator: match, contain

• combination of AND, ex: c1=3 and c2=5 and c3=7

• combination of OR, ex: c1=3 or c2=5 or c3=7

The WHERE clause can NOT allow the following statements:

• sub-query

• host variable

• mix of AND and OR, ex: c1=3 or c2=5 and c3=7

The following XPath rules help build useful indexes. The XPath:

• should not include a predicate

• should not include a function

• should include an absolute location path.

• may only allow 'child' axis

• should have a result nodeset containing only leaf nodes (simple type element node
or attribute node)

• the qname must be identical for all element nodes

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-104

• the name of each attribute must be identical for all attribute nodes

• must be base on an attribute node or an element leaf node

• cannot be a complex non-leaf node or a comment node, for example,

'/order/items/item/@product' or '/order/date'

• should not allow position '/order/items/item[1]/@product'

• may allow the function 'count(/order/items/item)'

• should not allow expressions

The UNIQUE keyword is optional. This keyword specifies whether an index is
unique. In a unique index, no more than one row can have the same key value and

cannot contain duplicate values. Each NULL value in an index is treated, as a unique
value making it possible to have multiple rows with NULL values in a unique index.
When creating an index on a non-empty table, DBMaker checks whether all existing

keys are distinct. If duplicate keys exist, DBMaker returns an error message and does
not create the index. Whenever you insert or update a record in a table that has a
unique index, DBMaker checks to ensure there is no existing record that already has

the same key values as the new or updated record. DBMaker does not create unique
indexes by default. When creating a unique index, specify using the UNIQUE
keyword.

The AUTO keyword is optional. This keyword specifies whether an index can be auto
performed by auto index daemon. It's behavior is similar to non-unique index, but it
can be automatically created or dropped by the auto index daemon. If the option

AUTOCOMMIT is set ON, DBMaker only requires Update(U) lock when creating
an auto index, which means DBMaker allows other users to query the table
simultaneously.When creating an auto index, users need to specify the AUTO

keyword.

The ASC/DESC keywords are optional. These keywords specify whether the sort
order of the index is ascending or descending. You can specify the sort order on a

column-by-column basis, so it is possible to have some index columns in ascending
order while others are in descending order. The sort order of an index may affect the
order of query output in some cases. If an index is in descending order, it is possible

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-105

the output will appear in descending order even though you did not specify this in the
query. If have a specific sort order for a query, specify it using the ORDER BY clause.
The default sort order for columns in an index is ASC.

The FILLFACTOR keyword is optional. This keyword specifies the percentage of an
index page that can be filled. This allows the database to optimize the use of index
pages by reserving space for updates for existing records. The number parameter can

have a value from 1 to 100, which represents a fillfactor of 1% to 100%. For
frequently updated tables, after indexing the table set a low fillfactor value (e.g., 50) to
reserve free space for inserting new key values. If you plan to update the table

infrequently, leave the fillfactor at the default value of 100.

When you load data into a table, DBMaker updates all indexes on that table each time
a new record is inserted. For this reason, try to load all data before creating an index

on a table. It is much more efficient to create an index after loading a large amount of
data than to create an index before loading the data.

Index names must be unique for each table. Index names have a maximum length of

128 characters and may contain numbers, letters, underscore characters, and symbols
$ and #. The first character may not be a number.

Indexes can also be created in tablespaces different from where their master tables

reside.

index_name Name of the new index to create

table_name Name of the table you are creating the index on

column_name Name of the column(s) created on the index

expression Expression created on the index

number Value to use for the fillfactor

tablespace_name Name of the tablespace where the index is created

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-106

CREATE index_ nameINDEX
UNIQUE

FILLFACTOR numberIN tablespace _name

ON table_ name

,

()

DESC
ASC

column_ name

expression

AUTO

WHERE-
filtered_condition

Figure 3-43 CREATE INDEX syntax

 Example 1

The following creates an index named NameIndex on the FName and LName
columns of the Employeesinfo table; the index is not unique and may contain
duplicate values.
dmSQL> CREATE INDEX NameIndex ON Employeesinfo (FName, LName);

 Example 2

The following creates an index named NameIndex on the FName and LName

columns of the Employeesinfo table, both sorted in descending order.
dmSQL> CREATE INDEX NameIndex ON Employeesinfo (FName DESC, LName DESC);

 Example 3

The following example creates a unique index named ClassIndex on the Course and
Section columns of the Classes table; index may not contain duplicate values.
dmSQL> CREATE UNIQUE INDEX ClassIndex ON Classes (Course, Section);

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-107

 Example 4

The following creates a unique index named ClassIndex on the Course and Section
columns of the Classes table; the index may not contain duplicate values and has a
fillfactor of 80.
dmSQL> CREATE UNIQUE INDEX ClassIndex ON Classes (Course, Section) FILLFACTOR 80;

 Example 5

The following creates a unique index named ExprIndex on the concat(Course,
Section) columns of the Classes table; the index may not contain duplicate values and
has a fillfactor of 80.
dmSQL> CREATE UNIQUE INDEX ExprIndex ON Classes (concat(Course,Section))
FILLFACTOR 80;

 Example 6

The following creates an auto index named AUTO_1D_2 on the column ID and
NAME of the table tb_staff (sorted in descending order).
dmSQL> CREATE AUTO INDEX AUTO_ID_2 ON tb_staff (ID DESC, NAME);

 Example 7

The following creates an auto index named AUTO_1DX_expr on the expression

basepay+bonus of the table tb_salary (sorted in descending order).
dmSQL> CREATE AUTO INDEX AUTO_IDX_expr ON tb_salary (basepay+bonus DESC);

 Example 8

The following creates a filtered index named FILIDX_ income using the where clause

for table tb_salary.
dmSQL> CREATE INDEX FILIDX_income ON tb_salary(basepay+bonus,tax)WHERE ID>30;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-108

3.40 CREATE PROCEDURE
The CREATE PROCEDURE command generates a new stored procedure. Using
stored procedures allows the database engine to bypass repeatedly compiling and
optimizing SQL commands. This provides increased performance of frequently

repeated tasks. Users with security privileges of RESOURCE level or higher and also
having security and object privileges necessary to execute the SQL statement may use
the CREATE PROCEDURE command.

A stored procedure is a compiled SQL data-manipulation statement permanently
stored in a database in executable format. It is executed as a command in interactive
SQL, or invoked from application programs, trigger actions or by other stored

procedures.

When creating a stored procedure, specify the procedure's name and a valid SQL data-
manipulation statement of SELECT, INSERT, UPDATE, or DELETE. Use host

variables as placeholders for column values in the SQL statement. Later when
executing the command actual values are assigned to the column. To use host variables
in a stored command, replace any data or column value with a question mark (?).

FROM FILE

OR REPLACE: specify OR REPLACE to re-create the procedure if it already exists,
that is to say, you can use this clause to change the definition of an existing procedure.

File_-nameFile name of procedure to create
OR REPLACE

PROCEDURE file_nameCREATE FROM

Figure 3-44 CREATE PROCEDURE FROM FILE syntax

 Example: create or replace procedure
dmSQL> CREATE PROCEDURE FROM 'file-name';
dmSQL> CREATE OR REPLACE PROCEDURE FROM 'file-name';

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-109

ESQL SP

OR REPLACE: specify OR REPLACE to re-create the procedure if it already exists,

that is to say, you can use this clause to change the definition of an existing procedure.

module_name The module name of procedure to create

procedure_name Name of procedure to create

procedure_paramter Parameters of procedure to create

procedure_return_result…Rreturn a result set from the procedure to create

NOTE Not support create or replace command syntax in execute procedure or set
autocommit off, it will throw error while call sp to replace the command.

procedure_parameter

CREATE
OR REPLACE

PROCEDURE

(

,
)

procedure_name

module_name. procedure_name

procedure_return_result

Figure 3-45 CREATE PROCEDURE syntax

. parameter_namedata_type

IN

OUT

INPUT

OUTPUT

.

Figure 3-46 CREATE PROCEDURE: procedure_parameter syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-110

. .STATUS
RETURNS

,

data_tupe result_nameSTATUS

Figure 3-47 CREATE PROCEDURE: procedure_return_result syntax

 Example: create or replace procedure.

- CREATE ESQL SP FROM FILE:
dmSQL> CREATE OR REPLACE PROCEDURE FROM 'proc1.ec';

- Write the ec file:
EXEC SQL CREATE OR REPLACE PROCEDURE proc1 (char(10) i1, char(10) i2 output)
 returns char(10) o1, char(10) o2;
{

EXEC SQL BEGIN CODE SECTION;
EXEC SQL select FName from tb_staff where LName =:i1 into:i2;
EXEC SQL returns select * from tb_staff into :o1,:o2;
EXEC SQL END CODE SECTION;

}

JAVA SP

OR REPLACE: specify OR REPLACE to re-create the procedure if it already exists,
that is to say, you can use this clause to change the definition of an existing procedure.

module_name The module name of procedure to create

procedure_name Name of procedure to create

procedure_parameter Parameters of procedure to create

date_type Date type of return variable

variable_name Name of return variable

package.class.method The java method of procedure to create

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-111

argtype The argument type of java method

java_sourcecode_jar_file… The physical jar files of java source code

related_jar_file Logical jar file

CREATE
OR REPLACE

PROCEDURE

(
,

)

procedure_name

module_name procedure_name

procedure_parameters

RETURNS STATUS

LANGUAGE JAVA

RETURNS STATUS

data_type - variable_name

,

FROM

(
,

)
argtype

package class method ’ ,

java_sourcecode_jar_file

owner.java_sourcecode_jar_file

,
related_jar_file

owner.releated_jar_file

‘

;

Figure 3-48 CREATE JavaSP syntax

 Example: create or replace procedure.

- Write a java file AddStaff.java
package staff;
import java.sql.*;

public class AddStaff
{

// Add an row into the tb_staff table
public static void addStaff(String fName, String lName)
throws Exception
{

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-112

// Register DBMaker JDBC Driver
Class.forName("dbmaker.sql.JdbcOdbcDriver");
// Connect to database
Connection conn =

DriverManager.getConnection("jdbc:default:connection");

// Prepare SQL statement
PreparedStatement pstmt =

conn.prepareStatement("insert into tb_staff values(?,?)");

// Set values of the dynamic SQL argument
pstmt.setString(1, fName);
pstmt.setString(2, lName);

// Execute the dynamic SQL statement
pstmt.execute();

// Close the dynamic SQL statement
pstmt.close();

// Close the connection

conn.close();
}

}

- Compile the AddStaff.java file in DOS command line, then it will create the
AddStaff.class file in the current directory.
javac AddStaff.java

- Copy AddStaff.class to current_dir\staff.

- Zip the class, It will create the addStaff.jar file in the current directory.
jar cvf addStaff.jar staff\AddStaff.class

- Make directory jar\SYSADM in <DB_SpDir>, and then move the addStaff.jar file
into <DB_SpDir>\jar\SYSADM.

- Add jarfile
dmSQL> ADD JARFILE addStaff addStaff.jar;

- Execute to create or replace the Java SP:

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-113

dmSQL> CREATE OR REPLACE PROCEDURE addStaff(char(12) fname,char(12) lname)
RETURNS STATUS LANGUAGE JAVA FROM
 'staff.AddStaff.addStaff(String,String)',addStaff;

SQL SP

OR REPLACE: specify OR REPLACE to re-create the procedure if it already exists,
that is to say, you can use this clause to change the definition of an existing procedure.

module_name The module name of procedure to create

procedure_name Name of procedure to create

procedure_parameter Parameters of procedure to create

date_type Date type of return variable

variable_name Name of return variable

sp_declare_main The main declare variable section of procedure to create

sp_statement_main ... The main statement section of procedure to create

NOTE Not support create or replace command syntax in execute procedure or set
autocommit off, it will throw error while call sp to replace the command.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-114

CREATE
OR REPLACE

PROCEDURE

(
,

)

procedure_name

module_name.procedure_name

procedure_parameters

RETURNS

LANGUAGE SQL

BEGIN

sp_declare_ main

; ;

sp_statement_main

END ;

Figure 3-49 CREATE SQL SP syntax

 Example: create or replace procedure:

- CREATE SQL SP FROM FILE:
dmSQL> CREATE OR REPLACE PROCEDURE FROM 'proc1.sp';

- Write the sp file:
dmSQL> CREATE OR REPLACE PROCEDURE proc1
LANGUAGE SQL
BEGIN
 DECLARE cur CURSOR WITH RETURN FOR select * from tb staff;
 OPEN cur;
END;

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-115

3.41 CREATE REPLICATION
The CREATE REPLICATION command generates a new table replication for a
table. Replications, synonyms, or views may not be created on a temporary table. Only
the table owner, a DBA, a SYSDBA or a SYSADM can execute the CREATE

REPLICATION command.

A table replication creates a full or partial copy of a table in a remote location. This
allows users in remote locations to work with a local copy of data. The local copy

remains synchronized with the databases in other locations. This way each database
can service data requests immediately and efficiently, without having to go to another
machine over a slower network connection. This is not the same as backing up the

database to a remote location, since the synchronization is done on a transaction-by-
transaction basis by the DBMS itself, without any intervention from users.

There are two primary types of table replication, synchronous and asynchronous.

Synchronous table replication modifies the remote table at the same time it modifies
the local table. Asynchronous table replication stores changes to the local table and
modifies the remote table based on a schedule. Use the CREATE REPLICATION

command to create synchronous and asynchronous table replications.

Synchronous table replication in DBMaker uses a global transaction model, in which
the replication of data to the remote table is treated as an integral part of the local

transaction. This means that if the replication of data to the remote database fails, the
transaction on the local table will also fail.

Asynchronous table replication in DBMaker uses transaction logs to replicate data to

the remote table. Modifications to the local table are stored in the transaction log, and
are replicated to the remote table according to a predefined schedule. Using the
transaction log enables DBMaker to treat the local transaction and the remote

transaction independently, permitting updates to local tables normally even if the
remote connection is not available. This allows asynchronous table replications to
tolerate network and remote database failures, since the replication will keep trying

until any failures are corrected.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-116

When creating a table replication specify the replication name, the local table name,
and the names of the remote destination tables. Both the local table and the remote
tables must already exist in their respective databases. DBMaker will automatically

drop any replications when dropping a table.

DBMaker will replicate the entire table unless using a column list. When replicating
an entire table without a column list, the columns in the local table and corresponding

columns in the remote table must have the same names and data types. Columns in
the local table (from left to right) will replicate to the corresponding columns named
in the column list for the remote table. Specify which columns in the local table

correspond to columns in the remote table by providing a column list for both the
local and remote tables. In all cases, include the primary key columns in the
replication and the number and data types of primary key columns in both tables must

match.

DBMaker does not identify replications using fully qualified names, but associates
them with tables instead. All replication names on the same table must be unique.

Synchronous table replications operate with the same security and object privileges as
the creator, unless the remote table is specified using links. In this case, the replication
operates with the same security and object privileges as the link. Asynchronous

replications operate with the same security and object privileges as the user specified in
the IDENTIFIED BY clause of the CREATE SCHEDULE command that is
associated with the database containing the remote table.

The ASYNC keyword is optional. This keyword specifies that the replication being
created is an asynchronous table replication. Before creating an asynchronous table
replication, create a replication schedule for the remote database that contains the

remote table. If this keyword is not used, DBMaker creates a synchronous table
replication by default.

The optional keyword "WHERE" clause specifies the search condition used when

replicating data to a remote table. DBMaker only replicates rows that satisfy the search
condition. See the WHERE clause in the description of the SELECT command for
more information.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-117

The CLEAR DATA/FLUSH DATA/CLEAR AND FLUSH DATA keywords are
optional. These keywords specify the operations that take place when creating a
replication. The CLEAR DATA keywords delete all data from the remote table when

generating the replication. The FLUSH DATA keywords copy all data that matches a
search condition into the remote table. The CLEAR AND FLUSH DATA keywords
clear all data from the remote table, and then copy all data that matches a search

condition into the remote table.

The NO CASCADE keywords are optional. It takes action only when the
replication's type is asynchronous. The keyword specifies if it is a cascade replication.

Let us use an example to describe cascade replications. Commands flow in most
organizations, from the highest level to the basic level. This is similar to replicating
data from A to B, and then to C. This is a typical kind of cascade replication. The no-

cascade model replicates data to B and B replicates data to A. If your data model works
like this, you can turn on the NO CASCADE option. The default specification is
CASCADE.

If you drop a table or a column that is referenced by an asynchronous table
replication, alter a table and modify the column definition, or alter a table and add a
column using the BEFORE and AFTER keywords, the synchronous replication

becomes invalid and cannot be used again. Altering a table and adding a column
without using the BEFORE and AFTER keywords has no impact on a synchronous
replication. Asynchronous table replications are not affected when you alter a table.

Drop an invalid replication to remove it from the database. Any replications created
on a table are dropped automatically when dropping a table.

Replication names have a maximum length of 128 characters, and may contain

numbers, letters, the underscore character, and the symbols $ and #. The first
character may not be a number.

replication_name Name of the table replication to create

local_table_name Name of the local table to replicate

column_name 1. Name of a column in the local table

 2. Name of a column in the remote table

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-118

search_conditionConditions a row must meet to be replicated

remote_table_name ...Name of the table in the remote database

local_table_name

REPLICATE TO

CREATE

WITH PRIMARY AS

column_name

,
)(

WHERE search_condition

,

remote_table_name

column_name

,
)(

CLEAR DATA

FLUSH DATA

CLEAR AND FLUSH DATA

ASYNC
REPLICATION replication_name

Figure 3-50 CREATE REPLICATION syntax

 Example 1

The following creates a replication named EmpRep for the local table named
Employeesinfo. The remote database is identified in the database configuration

section named FieldOffice in the local dmconfig.ini file. The remote table is also

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-119

named Employeesinfo and all column names and data types in both tables are the
same.
dmSQL> CREATE REPLICATION EmpRep WITH PRIMARY AS Employeesinfo
 REPLICATE TO FieldOffice:Employeesinfo;

 Example 2

The following is similar to the above example, but all data in the remote table is
deleted and any data in the local table is replicated to the remote table.
dmSQL> CREATE REPLICATION EmpRep WITH PRIMARY AS Employeesinfo
 REPLICATE TO FieldOffice:Employeesinfo
 CLEAR AND FLUSH DATA;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-120

3.42 CREATE SCHEDULE
The CREATE SCHEDULE command creates a replication schedule for
asynchronous table replications. Synchronous table replications do not use schedules,
so the CREATE SCHEDULE command has no effect on a synchronous table

replication. Only users with DBA, SYSDBA or SYSADM security privileges can
execute the CREATE SCHEDULE command.

A table replication creates a full or partial copy of a table in a remote location. This

allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the databases in other locations. This way each database
can service data requests immediately and efficiently, without having to go to another

machine over a slower network connection. This is not the same as backing up the
database to a remote location, since the synchronization is done on a transaction-by-
transaction basis by the DBMS itself, without any intervention from users.

The NO CASCADE keywords are optional. It takes action only when the replication
type is asynchronous. The keyword specifies cascade replication. Let us use an example
to describe cascade replications. Commands flow in most organizations from the

highest level to the basic level. This is similar to replicating data from A to B, and then
to C. This is typical cascade replication. The no-cascade model replicates data to B
and B replicates data to A. If your data model works like this, you can turn on the NO

CASCADE option. The default specification is CASCADE.

DBMaker not only allows asynchronous table replication to other DBMaker
databases, but also to Oracle, SYBASE, INFORMIX, and Microsoft SQL Server

databases. This type of replication is known as heterogeneous table replication.
Heterogeneous table replication allows DBMaker to coexist with other databases in a
heterogeneous environment. Since DBMaker needs to preprocess the replicated data

before sending it to a third-party remote database, specify the type of DBMS
replicating to when creating a schedule in a heterogeneous environment. Do this with
the ORACLE, SYBASE, INFORMIX, and MICROSOFT keywords, where

ORACLE indicates a remote Oracle database, SYBASE indicated a remote SYBASE

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-121

database, INFORMIX indicated a remote INFORMIX database, and MICROSOFT
represents a remote Microsoft SQL Server database.

When creating a heterogeneous table replication, the CLEAR DATA, FLUSH DATA,

or CLEAR AND FLUSH DATA keywords cannot be used. Manually delete or insert
data in the third-party remote database to put the table in its initial state before the
replication begins. In addition, performing schema checking on the third-party remote

database cannot be done. Check schema to ensure that columns and data types in the
remote table are compatible with the columns and data types in the local table. When
creating a schedule for a heterogeneous table replication, use the WITH NO CHECK

keywords to prevent DBMaker from performing schema checking (See the
description for the WITH NO CHECK keyword later in this section). DBMaker
makes use of the ODBC Driver Manager to perform heterogeneous table replication;

the DBMaker server must be located on Windows platforms. The third-party remote
databases may be located on either Windows or UNIX platforms.

BEGIN AT specifies the date and time of the first replication for an asynchronous

table replication. The date must be in yyyy/mm/dd format, where yyyy is the year in
the range 1970 to 2038, mm is the month in the range from 01 to 12, and dd is the
date in the range 01 to 31. The time must be in hh:mm:ss format, where hh is the hour

in the range from 00 to 23, mm is the number of minutes in the range from 00 to 59,
and ss is the number of seconds in the range from 00 to 59. The value for the year
must be in the range from 1970 to 2038. Include the date and time when using the

BEGIN AT keyword. If you change the date or time of the first replication to a date
in the future after a replication is already running, any table data that has not been
replicated to the remote database will wait until the new time for replication.

The EVERY command defines the interval between successive replications for an
asynchronous table replication. The interval may be provided as
hours/minutes/seconds, days, or a combination of both. To specify the number of

hours/minutes/seconds, use EVERY hh:mm:ss. Specify the number of days with
EVERY d DAYS, where d is the number of days in the range from 1 to 365. To
specify a combination of both, use EVERY d DAYS AND hh:mm:ss.

RETRY indicates how many times DBMaker should try replicating table data if there
is an error while trying to process a single SQL statement, such as a lock time-out

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-122

error, or rollback to save point due to a full Journal. To specify the number of times to
try, use RETRY n TIMES, where n is the number of times to try in the range from 0
to 2,147,483,647. The default value is 0. DBMaker waits until the next scheduled

replication to send any table data that was not replicated successfully when not using
the RETRY keyword and an error occurs while processing a statement, encounters a
network error, remote database error, or any error, which requires a transaction

rollback.

The AFTER keyword is optional. This keyword is used together with the RETRY
keyword to specify the interval between successive retries in the event of an error. To

specify the interval use the AFTER s SECONDS, where s is the number of seconds in
the range from 0 to 2,147,483,647. The default value is 5.

The STOP ON ERROR keywords are optional. These keywords specify the action

DBMaker should take when data in the remote database has been updated in such a
way that the replication could not take place. This could include situations where
DBMaker tries to delete a previously deleted record from the remote table or tries to

insert a record into the remote table that already exists. DBMaker provides two
options when encountering this type of error, STOP ON ERROR and IGNORE ON
ERROR. STOP ON ERROR indicates DBMaker will stop replicating data when an

error of this type occurs, and IGNORE ON ERROR indicates that DBMaker will
ignore the data that caused the error and continue replicating the remaining data. The
default behavior is IGNORE.

The WITH NO CHECK keywords are optional. Since DBMaker cannot currently
perform schema checking on a third-party database, use this keyword when creating a
heterogeneous table replication. When using the WITH NO CHECK keywords, users

must take responsibility for schema checking, and ensure that columns and data types
in the remote table are compatible with the columns and data types in the local table.
The WITH NO CHECK keywords are not necessary if performing a homogeneous

table replication (e.g., from one DBMaker database to another DBMaker database).

The IDENTIFIED BY keywords specify the user name and password to use when
connecting to the remote database. The user name provided must be an existing user

in the remote database with sufficient privileges on the remote table to perform
INSERT, DELETE, and UPDATE operations. When replicating table data to the

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-123

remote database, the operations you can perform on the remote table depend on the
security and object privileges granted to that user.

remote_database_name…Name of the table in the remote database to create the

replication schedule for; cannot be a database link.

yyyy/mm/dd Date to begin replication

hh:mm:ss 1. Time to begin replication

 2. Replication time interval

d Day interval for replication to the remote table

n times to retry in the event of a failure

s seconds to wait before retrying in the event of a failure

user_name remote database account User name

password remote database account Password

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-124

CREATE SCHEDULE FOR REPLICATION TO remote_database_name

BEGIN AT yyyy/mm/dd hh:mm:ss

EVERY d DAYS AND hh:mm:ss

EVERY d DAYS

EVERY hh:mm:ss

STOP ON ERROR

RETRY n TIMES
AFTER s SECONDS

,

user_nameIDENTIFIED BY
password

WITH NO CHECK

()

ORACLE

MICROSOFT

Figure 3-51 CREATE SCHEDULE syntax

 Example 1

The following creates a replication schedule for the asynchronous replication named
EmpRep. The date and time of the first replication is set to a new date in the future,

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-125

with a replication interval of 7 days and 12 hours, the date is in the future; any table
data that has not been replicated will wait until the new date before it is replicated.
dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00;

 Example 2

The following example creates the same schedule as the previous example but also sets
the times to retry after an error, lock time-out and a rollback to save point due to a full

Journal to 3 times with an interval of 5 seconds between successive tries.
dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00
 RETRY 3 TIMES AFTER 5 SECONDS;

 Example 3

The following creates the same schedule as the example above and sets the action
DBMaker should take when data in the remote database has been updated in such a
way that the replication cannot take place to STOP:
dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00
 RETRY 3 TIMES AFTER 5 SECONDS
 STOP ON ERROR;

 Example 4

The following creates the same schedule as the example above and sets the user name

and password to use when connecting to the remote database to RepUser and
rdejpe88.
dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00
 RETRY 3 TIMES AFTER 5 SECONDS
 STOP ON ERROR
 IDENTIFIED BY RepUser rdejpe88;

 Example 5

This is a heterogeneous table replication; specify the WITH NO CHECK keywords
to prevent DBMaker from performing schema checking on the remote database.

Ensure that columns and data types in the remote table are compatible with the

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-126

columns and data types in the local table the following creates the same schedule as
the example above and uses the ORACLE keyword to indicate that the remote table is
in an Oracle 8.0 database.
dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep (ORACLE)
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00
 RETRY 3 TIMES AFTER 5 SECONDS
 STOP ON ERROR
 WITH NO CHECK
 IDENTIFIED BY RepUser rdejpe88;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-127

3.43 CREATE SCHEMA
The CREATE SCHEMA command creates and enters a new schema into the current
database system. A schema is essentially a namespace: it contains named objects, also
known as schema objects, (tables, view, index, synonym, trigger, domain, command,

procedure) whose names may duplicate those of other objects existing in other
schemas. Schema objects are accessed by qualifying their names with the schema name
as a prefix.

Only users with RESOUCE privileges or above can create a schema. If the user_name
is omitted when creating a schema, the schema creator becomes the default user. Only
users with DBA authority may create schemas owned by users other than themselves.

When a user is granted connect privileges to DBMaker, DBMaker will create a default
schema for the user. The schema name will be the user's name. The schema name
must be unique. If a schema in the database, with the same name, already exists an

error will be returned.

The owner of the schema is determined as follows:

• If an AUTHORIZATION clause is specified, the specified user-name is the

schema owner. If the schema-name is omitted, the specified user-name is used as
the schema name.

• If an AUTHORIZATION clause is not specified, the user that issued the

CREATE SCHEMA statement is the schema owner.

schema_name Name of the new schema to create

user_name Name of the owner of the newly created schema

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-128

CREATE SCHEMA schema_name

AUTHORIZATION user_name

Figure 3-52 CREATE SCHEMA syntax

 Example 1

A user YUBIN, with RESOURCE authority, creates schema schm_def. YUBIN is the

default owner of the schema.
dmSQL> CREATE SCHEMA schm_def;

 Example 2

A user, with DBA authority, creates a schema with the user YUBIN as the owner.
YUBIN becomes the default schema name because no schema name was specified
when the schema was created.
dmSQL> CREATE SCHEMA AUTHORIZATION YUBIN;

NOTE It is import to remember that when a user is granted connection status
DBMaker automatically creates a schema for the user with the schema name
being the user's name. If a schema already exists in the database with the same
name an error message will be returned.

 Example 3

A user, with DBA authority, creates schema schm_auth with the user YUBIN as the
owner.
dmSQL> CREATE SCHEMA schm_auth AUTHORIZATION YUBIN;

 Example 4

A user, with DBA authority, creates schema inventory. The user then creates the
schema objects inventory.part and partind for the schema. The user then grants full

user authority to the user YUBIN on the table created. The user YUBIN does not
have any privileges on the schema inventory.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-129

dmSQL> CREATE SCHEMA inventory;
dmSQL> CREATE TABLE inventory.part (partNo smallint not null, quantity int);
dmSQL> CREATE INDEX partind ON inventory.part (partNo);
dmSQL> GRANT ALL ON inventory.part TO YUBIN;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-130

3.44 CREATE SYNONYM
The CREATE SYNONYM command creates a new synonym on an existing table or
view. You cannot create a synonym on a temporary table or on another synonym.
Only the table or view owner, a DBA, a SYSDBA or a SYSADM have the privileges to

execute the CREATE SYNONYM command on a table or view.

DBMaker normally identifies tables and views with fully qualified names that are a
composite of the owner name and object name. To help simplify statements that use

fully qualified table and view names, DBMaker provides synonyms.

A synonym is an alias that can be used for a table or view. It requires no storage space
other than its definition in the system catalog. Using synonyms, users can access a

table or view through the corresponding synonym without having to use the fully
qualified name.

Create more than one synonym for a table or view using unique synonym names. This

allows users to refer to synonym names without prefixing an owner name. If a user
owns a table with the same name as a synonym, DBMaker always uses the table and
ignores the synonym with the same name. To use the table referenced by the

synonym, provide the fully qualified name for that table. All synonyms on a table or
view are dropped automatically when dropping the referenced table or view.

Synonym names have a maximum of 128 characters, and may contain numbers,

letters, underscore characters, and symbols $ and #. The first character may not be a
number.

OR REPLACE: specify OR REPLACE to re-create the synonym that already exists,

that is to say, you can use this clause to change the definition of an existing synonym..

synonym_nameName of the new synonym to create

table_nameName of the table to create the synonym on

view_nameName of the view to create the synonym on

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-131

CREATE
OR REPLACE

SYNONYM synonym_name

view_ name

table_ name
FOR

Figure 3-53 CREATE SYNONYM syntax

 Example 1

The following creates a synonym named AllEmp for the AllEmployees table owned by

User1; use the synonym AllEmp in place of the fully qualified table name
User1.AllEmployees in subsequent SQL statements.
dmSQL> CREATE SYNONYM AllEmp FOR User1.AllEmployees;

 Example 2

The following creates a synonym named SalesEmp for the SalesEmployees view
owned by User2. Use the synonym SalesEmp in place of the fully qualified view name

User2.SalesEmployees in subsequent SQL statements.
dmSQL> CREATE SYNONYM SalesEmp FOR User2.SalesEmployees;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-132

3.45 CREATE TABLE
The CREATE TABLE command creates a new table. You should specify a tablespace
when creating the table. DBMaker will create a table in the system tablespace by
default. Any user with RESOURCE or higher security privileges can execute the

CREATE TABLE command.

Tables are the primary unit of data storage in a relational database, and any
information you enter in a database is stored in tables. Each table represents a single

type of real-world object and contains information on individual objects of that type.
These can be real objects, customers or products, and abstract objects, orders or
transactions. Each table in a database is given a unique name and this name normally

identifies the type of object stored in the table. Tables store the information about the
objects they represent in rows and columns.

Rows, also called records or tuples, contain information that defines a single type of

entity having common characteristics. Each row represents an individual occurrence of
that type of entity. The rows are identified using one or more of the characteristics of
the entity. They do not have any particular order and there is no guarantee that the

rows will be listed in the same order twice.

Columns, also called fields or attributes, contain information that defines the
characteristics of an entity. Each column represents one characteristic or item of data

that is stored for each individual occurrence of an entity. They are identified using a
descriptive name and a data type. Each column is referenced using a unique column
name. Columns in a table can be rearranged without affecting SQL queries.

Ensure data integrity by applying constraints or rules. When creating a table, apply
domain and column integrity constraints on individual columns, and table integrity
constraints.

Domain constraints are defined as part of the domain definition and are applied to all
columns based on the domain. When inserting a new row or updating an existing row,
each domain constraint is evaluated. Domain constraints can include NULL/ NOT

NULL constraints, default values, and CHECK constraints.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-133

Column constraints are defined on a specific column and do not affect other columns
in the same table. Whenever inserting a new row or updating an existing row, each
column constraint is evaluated. Column constraints can include NULL or NOT

NULL constraints, default values, and CHECK constraints.

Table constraints are defined on a set of columns. Whenever inserting a new row or
updating an existing row, each table constraint is evaluated after, all domain and

column constraints are evaluated as true. Only after the table constraint is also
evaluated as true will the statement be processed. Table constraints can include
UNIQUE and CHECK constraints, primary keys, and foreign keys.

To create a table, provide at least the table name and column definitions. Tables must
have at least one column and can have as many as 2,000 columns. Please note, the
maximum number of table columns also depends on the page size.

DBMaker identifies each table by a unique combination of schema name and table
name, known as the fully qualified name. Table names have a maximum length of 128
characters, and may contain numbers, letters, the underscore character, and the

symbols $ and #. The first character may not be a number. Table names must be
unique among all tables in a database. Only users with DBA privileges can create a
table with another user's table schema name. The specified table schema name must

exist in the database. The default schema name is the creator of the table. Table names
are case-insensitive.

To specify a column definition, provide at least a column name and a data type or

domain. The syntax and usage of keywords used in column definitions are shown on
the following pages.

table_name ……Name of the new table to create

column_definition ……Definition for a column

primary_key_defintion…...Definition for a primary key

foreign_key_definition…...Definition for a foreign key

constraint_name ……Name of the constraint to be applied to the table

tablespace_name ……Name of the tablespace to create the table in

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-134

boolean_expression…...Expression that evaluates true or false conditions

numberThe fillfactor value

table_nameTABLECREATE TEMPORARY
LOCAL TEMPORARY

MEMORY

LOCK MODE

TABLE

PAGE

ROW

 IN tablespace_name

FILLFACTOR number NO CACHE

as_select_statement

table_column_definition

Figure 3-54 CREATE TABLE syntax

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-135

(
, ,

foreign_key_definitionprimary_key_definition

(
column_definition

,

CONSTRAINT constraint_name

,

CONSTRAINT constraint_name CHECK boolean_expression
)

Figure 3-55 CREATE TABLE: table_column_definition syntax

()
select_statementAS

column_name

,

(

)

Figure 3-56 CREATE TABLE: as_select_statement syntax

Column Definitions

DBMaker identifies columns in a table by a unique combination of owner name, table
name, and column name, known as the fully qualified name. Column names have a

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-136

maximum length of 128 characters, and may contain numbers, letters, the underscore
character, and the symbols $ and #. The first character may not be a number. Column
names must be unique among all columns in the same table. Column names are case

insensitive.

DBMaker supports the following data types: BIGINT, BIGSETIAL, BINARY,
CHAR, DATE, DECIMAL, DOUBLE, FLOAT, FILE, INTEGER, BLOB, CLOB,

OID, SERIAL, SMALLLINT, TIME, TIMESTAMP and VARCHAR.

Optionally, use a domain for a column instead of a data type. Domains are a
combination of data type, default value, and constraints that are applied to a column

when it is defined using a domain as the data type. See the column definition
DEFAULT and CHECK keywords below for a description of default values and
constraints. Default values and constraints provided in the column definition will

override those of the domain. Column definitions can also provide constraints in
addition to those of the domain.

The NULL/NOT NULL keywords are optional. These keywords specify whether a

column can contain a NULL value when inserting a new row. The NULL keyword
specifies that a column may contain an undefined value when a new row is inserted,
while the NOT NULL keyword specifies that a value must be provided when a new

row is inserted. The NULL/NOT NULL keyword, NULL is used by default.

The USER/SYSTEM keywords are optional. These keywords specify whether users
can modify value of the column with a default value by using the INSERT/UPDATE

statement. USER is used by default. The USER keyword specifies that users can
modify its value, and the SYSTEM keyword specifies that users cannot modify its
value.

The DEFAULT keyword is optional. This keyword is used to specify a default value
that will be inserted into a column if no value is provided when inserting a new row.
Constants, results from built-in functions, or the NULL keyword may be used as the

default value. You can only use built-in functions that have no argument like PI(),
NOW(), or USER(), when defining a column. If using the NULL keyword as the
DEFAULT value, the column cannot be defined with the NOT NULL keyword.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-137

The ON UPDATE keyword is optional. This keyword specifies that value of the
column with a default value can be automatically updated when other columns' value
is changed.

The CHECK keyword, in the column definition, is optional. This keyword is used to
specify a range of acceptable values that may be entered in a column. The expression
that specifies the range of acceptable values may be any expression that evaluates to

true or false. The VALUE keyword may be used in the expression in conjunction with
the CHECK keyword to represent the value of the column. If an SQL statement does
not satisfy the CHECK conditions, it will not be processed.

column_name Name of the column to create

data_type Name of the data type to use for the column

domain_name Name of the domain to use in place of a data type

literal A literal value to use if no value is inserted

constant Constant value to use if no value is inserted

function_name Built-in function to use if no value is inserted

constraint_name Name of the constraint to be created

boolean_expression Expression that evaluates true or false conditions

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-138

data_type

domain_ name
NULL

NOT NULL
column_name

DEFAULT
constant

NULL
function_name

literal

CONSTRAINT constraint_name

CONSTRAINT constraint_name CHECK boolean_expression

USER
SYSTEM

ON UPDATE

Figure 3-57 Column Definitions syntax

Primary Key and Unique Definitions

A key is a column or combination of columns that help identify specific rows in a
table. The columns that make up a key are known as key columns. A unique key is a
key in which no two records have the same value or the key field.

A primary key is a key that uniquely identifies each row in a table. Without a primary
key, it is impossible to distinguish between specific rows in a table because rows may
contain duplicate values. The DBMS does not permit defining a primary key on

columns that contain duplicate values or to enter a duplicate value in a primary key
that already exists.

Primary keys ensure data integrity in a table by requiring unique key values in each

record of the primary key. This means columns in a primary key may not contain
duplicate or null values, define the key columns with the NOT NULL constraint.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-139

Primary keys may be built on up to 32 columns, providing the size of the columns
does not exceed 4,000 bytes.

Each table may only have one primary or unique key. A primary key cannot be

renamed. Instead, DBMaker automatically creates and maintains a unique, internally
managed index named PrimaryKey for the primary key in each table. Since DBMaker
builds an index on the primary key, it is not necessary to build another index on the

columns in the primary key to increase the performance of query operations.

constraint_name Name of the constraint to be created

column_name Name of the column to create the primary key on

column_name

,
()

CONSTRAINT constraint_name PRIMARY KEY

CONSTRAINT constraint_name UNIQUE

Figure 3-58 Primary Key and Unique Definitions syntax

Foreign Key Definitions

A foreign key is a key that corresponds to the primary key or a unique index of
another table. This establishes a parent-child relationship between two tables that is

represented by common data values stored in the tables. The parent table contains the
primary key or unique index, and the child table contains the foreign key whose
columns correspond to columns in the parent table.

Referential integrity ensures that every value in a child key has a corresponding value
in the parent key. Referential integrity is enforced between tables using the parent-
child relationship established with foreign keys. DBMaker has automatic support for

referential integrity constraints between tables through the definition of foreign keys.
When adding a record to a child table, the value in the child key must also exist in the
parent key. Similarly, when deleting a record from the parent table, all records in the

child key with the same value must be deleted first.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-140

Referential actions provide a means to update or delete a parent key when referential
integrity would not normally allow it. The referential actions define the operation
DBMaker should perform on all matching rows in the child key when you update or

delete a parent key. DBMaker supports four referential actions for both updates and
deletes: CASCADE, SET NULL, SET DEFAULT, and NO ACTION.

The ON UPDATE/ON DELETE keywords are optional. These keywords specify the

referential action DBMaker should perform when you update or delete a value in a
parent key that is referenced by a child key. The referential actions for these keywords
are: CASCADE, SET NULL, SET DEFAULT, and NO ACTION.

CASCADE performs an update or delete on all matching values in the child key when
updating or deleting the parent key. This will set the value of the child key to the same
value as the parent key when update or delete a row in the parent key.

SET NULL sets all matching values in the child key to NULL when updating or
deleting a row in the parent key. The SET NULL action cannot be used when the
child key was defined with the NOT NULL constraint.

SET DEFAULT sets all matching values in the child key to the default value of the
column when updating or deleting a row in the parent key. You cannot use the SET
DEFAULT action when the default value is NULL and the child key was defined with

the NOT NULL constraint.

NO ACTION enforces normal referential integrity rules. DBMaker uses NO
ACTION by default.

There is no practical limit to the number of foreign keys in a table. The parent key
may be the primary key or any other unique index of a table, but a parent key must be
created before adding the child key. The number of columns and column type or

length must be the same in the parent key and the child key. The column order of
corresponding keys may be different in each table, provided they are listed in
corresponding order in the foreign key definition. The primary key of the parent table

is used by default.

Columns in a foreign key may contain null values. If a foreign key contains a null
value, it satisfies referential integrity automatically. A foreign key may not be created

on a view, but may be created on a synonym. Foreign key names have a maximum

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-141

length of 128characters, and may contain numbers, letters, the underscore character,
and the symbols $ and #. The first character may not be a number.

constraint_name Name of the constraint to be created

key_name Name of the foreign key to be created

column_name 1. Name of the column the foreign key is created on

 2. Name of the column referenced by the foreign key

parent_table_name ... Name of the table the foreign key references

REFERENCES parent_table_name

foreign_key_name

CONSTRAINT constraint_name

ON UPDATE

CASCADE

SET DEFAULT
SET NULL

NO ACTION
column_name

,
)(

ON DELETE

CASCADE

SET DEFAULT
SET NULL

NO ACTION

column_name

,
()

FOREIGN KEY

Figure 3-59 Foreign Key Definitions syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-142

Table Options

DBMaker provides a number of optional features that can be used when creating a
table. Specify the behavior of these options using: TEMPORARY/TEMP/MEMORY,

IN, CHECK, LOCK MODE, NOCACHE, and FILLFACTOR keywords.

The TEMPORARY/TEMP keywords are optional. These keywords specify that a
table should be created as a temporary table instead of a permanent table. Data access

is faster in temporary tables since no locks are used and no Journal records are written
for temporary tables. However, temporary tables can only be used by the table owner,
and are automatically deleted when you disconnect from the database. Also, drop a

temporary table at any time while still connected to the database using the DROP
TABLE command.

The MEMROY keywords are optional. Memory tables, for almost all intents and

purposes, function in the same manner as a regular table in DBMaker. The differences
lie in the fact that memory tables are temporary tables, their life cycle being
connection based. This means that when user create a memory table, it ill be dropped

when the user drop it or when user disconnected from the database. Unlike a regular
table, memory table are only stored in the memory of the connection that created
them. They cannot be used by other connection and they can only have data selected

or inserted, their data cannot be updated or deleted. Memory tables do support the
transaction controls: commit, rollback, define save point and rollback to save point.

These keywords specify that a table should be created as a temporary table instead of a

permanent table. Data access is faster in temporary tables since no locks are used and
no Journal records are written for temporary tables. However, temporary tables can
only be used by the table owner, and are automatically deleted when you disconnect

from the database. Also, drop a temporary table at any time while still connected to
the database using the DROP TABLE command.

The IN keyword is optional. This keyword specifies the name of the tablespace the

table will be created in. Tablespaces are the logical areas of storage used to partition
information in a database into manageable areas. Permits separate tables according to

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-143

logical groupings, or to place frequently used tables in different storage locations .The
table is created in the system tablespace by default.

The CHECK keyword, in the table definition, is optional. This keyword behaves in a

manner similar to the CHECK keyword used in the column definition. It normally is
used to ensure data from multiple columns falls into an acceptable range of values.
The expression of acceptable values may be any expression that evaluates to true or

false. Column names may be used in the expression in conjunction with the CHECK
keyword to represent the value of a column. If an SQL statement does not satisfy the
CHECK conditions, it is not processed.

The LOCK MODE keyword is optional. This keyword specifies the lock level
DBMaker uses when accessing data in a table. DBMaker includes the table, page, and
rowlock modes. Page lock mode is used by default. To determine the lock mode of a

table, examine the LOCKMODE column of the SYSTABLE system table.

LOCK MODE TABLE locks an entire table. This mode decreases concurrency by
preventing other users from accessing the locked table at the same time. It also uses

fewer lock resources and requires less memory in the System Control Area (SCA).

LOCK MODE PAGE locks a single data page. This mode is a trade-off between
concurrency and lock resources. It provides moderate concurrency since other users

may access data in other pages, but not access any data on the same page.

LOCK MODE ROW locks a single row. This mode increases concurrency by
allowing other users to access any data except the locked row at the same time. It also

uses more lock resources and requires more memory in the SCA.

FILLFACTOR specifies the percentage of a data page that can be filled. This allows
the database to optimize the use of data pages, reserving space for updates to records.

The number parameter can have a value from 50 to 100, which represents a fillfactor
of 50% to 100%. To determine the fillfactor of a table, examine the FILLFACTOR
column of the SYSTABLE system table.

NOCACHE limits the number of page buffers used to cache data during a table scan.
DBMaker stores page buffers in a buffer chain with the most recently used page at the
beginning and the least recently used page end. When the NOCACHE option is

turned on, data pages read during a table scan are placed at the end of the buffer

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-144

chain. Since the end of the buffer chain will be flushed before the beginning,
subsequent data pages read during the table scan, will replace the previous page. This
effectively limits the page buffers used during a table scan to one page buffer. To

determine the cache mode of a table, examine the CACHEMODE column of the
SYSTABLE system table.

When creating a table, you are the table owner. You have all object privileges on the

table, and may assign object privileges for that table to other users. As the table owner,
you retain all object privileges on the table even if your security privilege is reduced to
CONNECT.

NOTE Both forms of the CHECK and CHECK VALUE syntaxes have been updated
in DBMaker to be SQL 99 compliant.

 Example 1

The following creates a table named Scores in the system tablespace with StudentNo,
Math, English, Science, and History columns, defined with the INTEGER data type.
dmSQL> CREATE TABLE Scores (StudentNo INTEGER,
 Math INTEGER,
 English INTEGER,
 Science INTEGER,
 History INTEGER);

 Example 2

The following creates the same table from the example above in the StudentRecords
tablespace, columns may not contain NULL values, and a default value of zero is
assigned to the Math, English, Science, and History columns with the table owner
name Madison.
dmSQL> CREATE TABLE Madison.Scores
 (StudentNo INTEGER NOT NULL,
 Math INTEGER NOT NULL DEFAULT 0,
 English INTEGER NOT NULL DEFAULT 0,
 Science INTEGER NOT NULL DEFAULT 0,
 History INTEGER NOT NULL DEFAULT 0)
 IN StudentRecords;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-145

 Example 3

The following creates the same table from the example above and the Math, English,
Science, and History columns must contain values from 0 to 100.
dmSQL> CREATE TABLE Scores (StudentNo INTEGER NOT NULL,
 Math INTEGER NOT NULL DEFAULT 0
 CHECK VALUE >= 0 AND VALUE <= 100,
 English INTEGER NOT NULL DEFAULT 0
 CHECK VALUE >= 0 AND VALUE <= 100,
 Science INTEGER NOT NULL DEFAULT 0
 CHECK VALUE >= 0 AND VALUE <= 100,
 History INTEGER NOT NULL DEFAULT 0
 CHECK VALUE >= 0 AND VALUE <= 100)
 IN StudentRecords;

 Example 4

The following creates the same table from the example above and defines a table
constraint to ensure: the sum of the Math, English, Science and History columns is

less than 400, the lock mode is set to PAGE, specifies a FILLFACTOR of 90, and
turns on the NOCACHE option.
dmSQL> CREATE TABLE Scores (StudentNo INTEGER NOT NULL,
 Math INTEGER NOT NULL DEFAULT 0
 CHECK VALUE >= 0 AND VALUE <= 100,
 English INTEGER NOT NULL DEFAULT 0
 CHECK VALUE >= 0 AND VALUE <= 100,
 Science INTEGER NOT NULL DEFAULT 0
 CHECK VALUE >= 0 AND VALUE <= 100,
 History INTEGER NOT NULL DEFAULT 0
 CHECK VALUE >= 0 AND VALUE <= 100)
 IN StudentRecords
 CHECK Math + English + Science + History <= 400;

 Example 5

The following creates the same table from the example above, but sets the lock mode
to PAGE, specifies a FILLFACTOR of 90, and turns on the NOCACHE option.
dmSQL> CREATE TABLE Scores (StudentNo INTEGER NOT NULL,
 Math INTEGER NOT NULL DEFAULT = 0
 CHECK VALUE >= 0 AND VALUE <= 100,

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-146

 English INTEGER NOT NULL DEFAULT = 0
 CHECK VALUE >= 0 AND VALUE <= 100,
 Science INTEGER NOT NULL DEFAULT = 0
 CHECK VALUE >= 0 AND VALUE <= 100,
 History INTEGER NOT NULL DEFAULT = 0
 CHECK VALUE >= 0 AND VALUE <= 100)
 IN StudentRecords
 CHECK Math + English + Science + History <= 400
 LOCK MODE PAGE
 FILLFACTOR 90
 NOCACHE;

 Example 6a
dmSQL> CREATE TABLE computer(id INT, buy time TIMESTAMP DEFAULT '2012-03-04
12:12:12', price int); //now attributes of buy time is USER
dmSQL> INSERT INTO computer VALUES(1, '2012-10-10 10:10:20', 3400); //value of
buy time will be replaced with '2012-10-10 10:10:20' which is specified by the
user
1 rows inserted
dmSQL> INSERT INTO computer VALUES(2, '2012-10-11 10:10:20', 5400);
1 rows inserted
dmSQL> select * from computer;
 ID BUY TIME PRICE
=========== =========================== ===========
 1 2012-10-10 10:10:20 3400
 2 2012-10-11 10:10:20 5400
2 rows selected
dmSQL> UPDATE computer SET price=3200 WHERE id=1; //value of buy time will not be
updated
1 rows updated
dmSQL> select * from computer;
 ID BUY_TIME PRICE
=========== =========================== ===========
 1 2012-10-10 10:10:20 3200
 2 2012-10-11 10:10:20 5400
2 rows selected

 Example 6b
dmSQL> ALTER TABLE computer MODIFY (buy_time TO buy_time TIMESTAMP DEFAULT '2012-
03-04 12:12:12' ON UPDATE); //now attributes of buy_time is USER and ON UPDATE

_

_

_

_

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-147

dmSQL> UPDATE computer SET price=3000 WHERE id=1; //value of buy_time will be
replaced with the default value'2012-03-04 12:12:12'
1 rows updated
dmSQL> select * from computer;
 ID BUY_TIME PRICE
=========== =========================== ===========
 1 2012-03-04 12:12:12 3000
 2 2012-10-11 10:10:20 5400
2 rows selected
dmSQL> UPDATE computer SET price=3000, buy_time='2012-10-10' WHERE id=1;//value
of buy_time will be replaced with '2012-10-10' which is specified by the user
1 rows updated
dmSQL> select * from computer;
 ID BUY_TIME PRICE
=========== =========================== ===========
 1 2012-10-10 00:00:00 3000
 2 2012-10-11 10:10:20 5400
2 rows selected

 Example 6c
dmSQL> ALTER TABLE computer MODIFY (buy time TO buy time TIMESTAMP SYSTEM DEFAULT
'2012-03-04 12:12:12'); //now attributes of buy_time is SYSTEM
dmSQL> INSERT INTO computer VALUES(3, '2012-11-10 10:10:20', 4700); //value of
buy time will not be replaced with '2012-11-10 10:10:20' which is specified by
the user.
1 rows inserted
dmSQL> INSERT INTO computer VALUES(4, '2012-12-11 10:10:20', 2800);//value of
buy time will not be replaced with '2012-12-11 10:10:20' which is specified by
the user.
1 rows inserted
dmSQL> select * from computer;
 ID BUY_TIME PRICE
=========== =========================== ===========
 1 2012-10-10 00:00:00 3000
 2 2012-10-11 10:10:20 5400
 3 2012-03-04 12:12:12 4700
 4 2012-03-04 12:12:12 2800
4 rows selected

_ __

_

_

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-148

dmSQL> UPDATE computer SET price=4500 WHERE id=3; //value of buy time will not be
updated.
1 rows updated
dmSQL> select * from computer;
 ID BUY_TIME PRICE
=========== =========================== ===========
 1 2012-10-10 00:00:00 3000
 2 2012-10-11 10:10:20 5400
 3 2012-03-04 12:12:12 4500
 4 2012-03-04 12:12:12 2800
4 rows selected

 Example 6d
dmSQL> ALTER TABLE computer MODIFY (buy_time TO buy_time TIMESTAMP SYSTEM DEFAULT
'2012-03-04 12:12:12' ON UPDATE); //now attributes of buy_time is SYSTEM and ON
UPDATE
dmSQL> UPDATE computer SET price=4000, buy_time='2015-01-01' WHERE id=3; //value
of buy_time will be replaced with the default value'2012-03-04 12:12:12'
1 rows updated
dmSQL> select * from computer;
 ID BUY_TIME PRICE
=========== =========================== ===========
 1 2012-10-10 00:00:00 3000
 2 2012-10-11 10:10:20 5400
 3 2012-03-04 12:12:12 4000
 4 2012-03-04 12:12:12 2800
4 rows selected

CREATE TABLE AS SELECT

Use the CREATE TABLE AS SELECT syntax to create a table and the column

definition and data derived from the select_statement. It will create the table's column
definition like CREATE VIEW and insert data like SELECT INTO.

 Example

The following creates the table from the query that selects the Math score > 70's
StudentNo from the Scores table.
dmSQL> CREATE TABLE Scores70 AS SELECT StudentNo, Math FROM Score

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-149

WHERE Math > 70 IN tablespace1;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-150

3.46 CREATE TABLESPACE
The CREATE TABLESPACE command generates a new tablespace. A new tablespace
permits increasing the physical storage available to the database. Only users with DBA,
SYSDBA or SYSADM security privileges can execute the CREATE TABLESPACE

command.

DBMaker uses the relational data model to hide the details of the physical storage
model and present data using a logical storage model. In the DBMaker physical

storage model, files are physical storage structures that contain the data in the
database. Files are managed by the operating system, with the exception of raw UNIX
devices, while data in the files is managed by the DBMS. DBMaker uses three types of

files during normal operation Data, BLOB, and Journal.

Data files and BLOB files store user and system data. Although they have similar
characteristics, DBMaker manages these two file types in different ways to improve

performance. Data files store table and index data, while BLOB files store only Binary
Large OBjects (BLOBs).

Journal files are special files that provide a real-time, historical record of all changes

made to a database and the status of each change. This allows the database to undo
changes made by a transaction that fails, or redo changes made successfully but not
written to disk after a database crashes. Journal files are used only by the database

management system, and are not used to store user data.

In the DBMaker logical storage model, tablespaces are the logical storage structures
used to partition information in a database into manageable areas. Each tablespace

may contain several tables and indexes. Data in the tablespace is managed by the
DBMS, but is physically stored in data and BLOB files. The three types of tablespaces
included are regular, autoextend, and system.

Regular tablespaces are tablespaces that have a fixed size and contain one or more data
or BLOB files. Manually extend a regular tablespace by enlarging existing files or
adding new files. A regular tablespace may contain a maximum of 32,767 files, with a

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-151

maximum cumulative size of 8 TB. On UNIX platforms, regular tablespaces may be
placed on raw devices.

NOTE For more information on raw devices, see your UNIX system documentation.

Autoextend tablespaces are tablespaces that automatically increase in size to hold
additional data as required. Regular and autoextend tablespaces may contain one or
many data files, and BLOB files. It is possible for an autoextend tablespace to run out

of space. The maximum file size is 8 TB and or the disk may be full. Add files to
autoextend tablespaces manually to extend an autoextend tablespace by enlarging
existing files. Do this to pre-allocate space for improved performance when inserting a

large amount of data into an autoextend tablespace. Autoextend tablespaces cannot be
used with raw devices.

System tablespaces are tablespaces generated by DBMaker when creating a database.

Each database has one system tablespace, which contains the system catalog tables used
to store schema, security, and status information about the entire database. The system
tablespace is a special type of autoextend tablespace. System tablespaces contain one

data and one BLOB file created automatically with the tablespace and not used to
store user data. System tablespaces may be converted to regular tablespaces and may
not be used with raw devices.

The AUTOEXTEND keyword is optional. This keyword specifies whether a
tablespace is created as an autoextend tablespace. An autoextend tablespace can extend
its size automatically as when requiring additional space. An autoextend tablespace

may be changed to a regular tablespace at any time. It may also be changed back to an
autoextend tablespace at any time.

The BACKUP BLOB keyword is optional. This keyword specifies whether DBMaker

will back up BLOB data in this tablespace when the database is in
BACKUP_DATA_AND_BLOB mode. DBMaker backs up all BLOB data in the
tablespace when the database is in BACKUP_DATA_AND_BLOB mode and

BACKUP BLOB is ON. When BACKUP BLOB is set to OFF, DBMaker does not
back up any BLOB data in the tablespace, regardless of the backup mode.

To ensure data independence within the database, operating system files cannot be

referenced directly within a database. To work around this, each database file has two

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-152

names, a physical file name and a logical file name. The physical file name is the name
used by the operating system, while the logical file name is the name used by the
database. These two names are related by an entry in the dmconfig.ini file. Before

executing the CREATE TABLESPACE command, make an entry in the dmconfig.ini
specifying the logical file name, the physical file name, and the initial size of each
physical file in the appropriate database configuration section. Please see the following

examples.

The DATAFILE keyword specifies the logical file name and the type of files to create
when creating the tablespace. Specify multiple files up to a maximum of 32,767;

providing the type of tablespace permits it and there is sufficient disk space.
Tablespaces must contain at least one data file. Add more files to a tablespace using
the ALTER TABLESPACE command.

The TYPE keyword specifies whether DBMaker will create a new file as a data file or a
BLOB file. Use TYPE = DATA to create a new data file, and TYPE = BLOB to create
a new BLOB file. When not specifying the type of file using the TYPE keyword, the

default file will be created as a data file.

DBMaker creates all physical files in the default database directory specified by the
DB_DbDir keyword in dmconfig.ini, unless a directory or path for the file is

specified. The initial file size is specified as a number of data pages for data files, or a
number of BLOB frames for BLOB files.

Specify an initial file size for data files by specifying a value from 2 to 2,147,483,647

pages. To calculate the actual size of the file in kilobytes, multiply this value by the
value of DB_PgSiz as specified in dmconfig.ini. Specify an initial file size for BLOB
files by specifying a value from 2 to 524,287 frames. To calculate the actual size of the

file in kilobytes, multiply this value by the value of DB_BfrSz from the dmconfig.ini
file.

The files in a tablespace do not have to be located on the same disk; you may specify a

different disk or different path on the same disk for each file in the tablespace. If using
UNIX, also allocate files in a regular tablespace on raw devices. Using raw devices
allows faster access and performance improvements over regular operating system files.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-153

DBMaker writes to raw device files directly instead of relying on operating system
calls.

Tablespace names and logical file names have a maximum of 128characters and may

contain numbers, letters, underscore characters and symbols $ and #. The first
character may not be a number. Tablespace names are case-sensitive.

Physical file names have a maximum length, including drive and path names, of 255

characters, and may contain any characters and symbols permitted by the operating
system, except spaces. The case-sensitivity of physical file names is dependent on the
operating system.

tablespace_name Name of the new tablespace to create

file_name Logical name of the physical tablespace files

CREATE tablespace_nameTABLESPACE
AUTOEXTEND

DATAFILE

file_name

TYPE=DATA

TYPE=BLOB

,

BACKUP BLOB OFF

BACKUP BLOB ON

Figure 3-60 CREATE TABLESPACE syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-154

 Mapping 1

Before executing example 1, add a line to the dmconfig.ini file to map the logical file
names to the physical file names, and indicate the initial physical file size in pages for
data files or frames for BLOB files. The size of the data file will be 800 KB using the

default Page Size of 8 KB and the size of the BLOB file will be 3200 KB, using the
default BLOB frame size of 32 KB.
datafile = c:\dbmaker\database\ts_reg_df.db 100
blobfile = c:\dbmaker\database\ts_reg_bf.bb 100

 Example 1

The following creates a regular tablespace named ts_reg with one logical data file
named datafile and one logical BLOB file named blobfile and permits adding

additional data or BLOB files to the tablespace, up to a maximum of 32767 files.
dmSQL> CREATE TABLESPACE ts_reg DATAFILE datafile TYPE=DATA, blobfile TYPE=BLOB;

 Mapping 2

Before executing example 2, add a line to the dmconfig.ini file to map the logical file
names to the physical file names, and indicate the initial physical file size in pages for
data files or frames for BLOB files. The size of the data file will be 800 KB using the

default Page Size of 8 KB and the size of the BLOB file will be 3200 KB using the
default BLOB frame size of 32 KB.
datafile = c:\dbmaker\database\ts ext df.db 100
blobfile = c:\dbmaker\database\ts_ext_bf.bb 100

 Example 2

The following creates an autoextend tablespace named ts_ext with one logical data file
named datafile, and one logical BLOB file named blobfile; additional data or BLOB

files may not be added to this tablespace.
dmSQL> CREATE AUTOEXTEND TABLESPACE ts ext DATAFILE datafile TYPE=DATA,
 blobfile TYPE=BLOB;

_ _

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-155

3.47 CREATE TEXT INDEX
Two types of index may be created with DBMaker, a signature text index or an
inverted file (IVF) text index. Signature text indexes are built in the same tablespace as
the column for which the index is being built. IVF indexes are built in a separate file

and exhibit better performance for larger indexes.

The CREATE TEXT INDEX command creates a new text index on a column or
columns. Use text indexes to increase the performance of full-text queries by quickly

locating specific words in columns containing text without examining the entire table.
Only the table owner, a DBA, a SYDBA, a SYSADM, or a user with the INDEX
privilege on that table may execute the CREATE TEXT INDEX command.

A text index is a mechanism that provides fast access to rows that contain one or more
words or phrases in columns containing text. Text indexes contain a representation of
all the text found in the text columns they are based on. The data is encoded and

structured to make retrieval much faster than directly from the table. An index's
operation is transparent to users and the DBMS uses it to improve full-text query
performance.

When creating a text index, specify an index name, the name of the table, and the
name of the column or columns. Text indexes may be created on columns defined
with the CHAR, VARCHAR, CLOB, NCHAR, NVARCHAR, NCLOB, or FILE

data types. Text indexes may not be created on system tables, temporary tables, or
views.

The Order By clause supports a search for a word or words in a column and ranks the

results in another column. After creating a text index with Order By Column, the
result will be output ranked by the Order By Column automatically while DBMaker
processes a query on the text index, speeding up the query. For example, to search the

content column and order by post time column, add an Order By Post Time clause at
the end of select statement. DBMaker must have a sorting on the result for the order
by clause. The sorting will take a lot of time. If you have created the text index with

Order By Post Time column, you can get a sorted result without adding the Order By
Clause. Specify the ASC or DESC keyword to denote the ranking as ascending or

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-156

descending. The default order is ascending. The Order By Column attribute can also
take affect on the increment part of the rebuild index command. However, it cannot
re-order the records across old data or increment data.

When loading data into a table, DBMaker does not update any text indexes on that
table. Load all data before creating a text index on a table, when possible. Rows
containing matching text entered into a table after the text index was created will not

be returned with the full-text search results. To include these rows in the search
results, rebuild the text index using the REBUILD TEXT INDEX command.

Text index names must be unique for the each table. Text index names have a

maximum length of 128 characters, and may contain numbers, letters, the underscore
character, and the symbols $ and #. The first character may not be a number.

Signature Text Index

Signature text indexes can be built on all character type columns, including CHAR,

VARCHAR, LONG VARCHAR, NCHAR, NVARCHAR, NCLOB, and FILE
types. A table can have multiple text indexes, and text indexes can be built on multiple
columns.

TOTAL TEXT SIZE is the estimated total size of all documents in the columns on
which the text index will be built in MB. The range is from 1 to 200, and the default
value is 32. This value is used for estimation and performance optimization by

DBMaker and does not actually place a constraint on the number of documents
allowed in a column. If the estimated total size exceeds 200 MB, use 200 MB or create
an inverted file (IVF) index for significantly improved query performance.

SCALE is the expected ratio of index size to total column size. If you set the TOTAL
TEXT SIZE to 20 and expect the index to use approximately 10 MB of storage, then
you should set the scale to 50 (50%). Search performance increases as the scale

increases. You can enter a range is from 10 to 200. The default value is 40.

text_index_nameName of the text index to create

table_nameName of the table to create the text index on

column_nameName of the column to create the index on

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-157

order_column_name . Name of the column to start with

number value used with parameters SCALE and TOTAL TEXT SIZE

ON table_name ()

TEXT INDEX text_index_name

TOTAL TEXT SIZE number MB

SIGNATURE
CREATE

ORDER BY

DESC
ASC

,

SCALE number

column_name

,

column_name

Figure 3-61 CREATE SIGNATURE TEXT INDEX syntax

 Example 1

The following creates a signature text index named TxtIdx on the FName column of

the Employeesinfo table, using the default values for all parameters, and order by
Emp_ID column.
dmSQL> CREATE SIGNATURE TEXT INDEX TxtIdx ON Employeesinfo(FName) ORDER BY
Emp_ID;

 Example 2

The following command creates a signature text index named TxtIdx on the FName
column of the Employeesinfo table, estimating the total size of the column at 20 MB,

and creating an index that scales to 50% of the size of the actual text index.
dmSQL> CREATE SIGNATURE TEXT INDEX TxtIdx ON Employeesinfo(FName) TOTAL TEXT SIZE
20 MB SCALE 50;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-158

Inverted File Text Index

The CREATE IVF TEXT INDEX command creates a new inverted file (IVF) text

index on a specified column. An IVF text index can be used in place of a standard
index to increase the performance of queries, particularly on columns that contain
more than 200 MB of data.

A table owner or a user with DBA, SYSDBA or SYSADM security privilege can create
an IVF text index.

IVF indexes are sorted in the operating system's file system, and are administered

through the database. The location where the IVF index should be stored is specified
when the index is created. DBMaker manages the creation of sub-directories within
the IVF index root directory.

text_index_nameName of the text index to create

table_nameName of the table to create the text index on

column_nameName of the column to create the index on

pathFull directory path for storing the index

order_column_name .Name of the column to start with

numberValue used with parameters SCALE and TOTAL TEXT SIZE

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-159

ON table_name ()

text_index_name

ORDER BY

DESC
ASC

,

STORAGE PATH path

column_ name

,

TOTAL TEXT SIZE number MB

CREATE IVF TEXT INDEX

column_name

Figure 3-62 CREATE IVF TEXT INDEX syntax

 Example 1

The following creates an IVF text index named TxtIdx on the LName column of the
Employeesinfo table, and using the default values for all parameters.
dmSQL> CREATE IVF TEXT INDEX TxtIdx ON Employeesinfo(LName);

 Example 2

The following command creates an IVF text index named TxtIdx on the LName
column of the Employeesinfo table, and stores the IVF text index in the logical file

DB_IvfDir, while estimating the total size of the column at 100 MB.
dmSQL> CREATE IVF TEXT INDEX TxtIdx ON Employeesinfo(LName) STORAGE PATH
DB_IVFDIR TOTAL TEXT SIZE 100 MB ORDER BY Emp_ID ASC;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-160

3.48 CREATE TRIGGER
The CREATE TRIGGER command creates a new trigger on a table. Use triggers to
customize a database in ways that would not be possible with standard SQL
commands. Only the table owner, a DBA, a SYSDBA, or a SYSADM with all security

and object privileges necessary to execute the SQL statement that defines the trigger
action may execute the command.

A trigger is a database server mechanism that automatically executes predefined

commands in response to specific events. This allows a database to perform complex
or unconventional operations. Triggers are under the control of the database server
and ensure that data is handled consistently, regardless of the source. A trigger on a

table is transparent to users.

When creating a trigger, specify a name, trigger action time (when a trigger should fire
relative to the trigger event), the trigger event (the event that causes the trigger to fire),

a trigger table (the table the trigger is being created for), trigger type (type of trigger to
be fired), and the trigger action (the action the database should perform when the
trigger fires). Any triggers created on a table are dropped automatically when dropping

the table.

DBMaker associates triggers using tables instead of fully qualified names. All trigger
names on the same table must be unique. The trigger action operates with the same

security and object privileges as the owner of the trigger table, and not with the
privileges of the user executing the trigger event.

The BEFORE/AFTER keywords specify when the database server should perform the

trigger action relative to the trigger event. This is known as the trigger action time.
The BEFORE keyword specifies the database server to perform the trigger action
before the trigger event. The AFTER keyword specifies that the database server should

perform the trigger action after the trigger event.

The INSERT/DELETE/UPDATE keywords specify the event that fires a trigger. This
is known as the trigger event. The INSERT keyword specifies that a trigger fires

whenever inserting a row into a table, and the DELETE keyword specify that a trigger

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-161

fire whenever deleting a row from a table. The UPDATE keyword specifies that a
trigger fire after updating any column in a table. Use UPDATE OF to instruct a
column list when to fire a trigger after updating specific columns. Using UPDATE

OF to specify a column list limits the use of each column name to on instance on all
UPDATE triggers for that table.

The ON keyword specifies the name of the table to create the trigger on, known as the

trigger table. The trigger table must be a permanent table in the database, not a
temporary table, a view, or a synonym. Only specify a single trigger table for each
trigger.

OR REPLACE: specify OR REPLACE to re-create the trigger that already exists, that
is to say, you can use this clause to change the definition of an existing trigger.

trigger_name Name of the trigger to create

column_name Name of the column to create the trigger on

table_name Name of the table to create the trigger on

sql_statement Statement to execute when the trigger fires

CREATE
OR REPLACE

TRIGGER

UPDATE
OF

ON

cloumn _name

trigger_name
BEFORE

AFTER

(-sql_statement -)

DELETE

INSERT

,

table_name

for_each_statement_clause

for_each_row_clause

Figure 3-63 CREATE TRIGGER syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-162

For Each Row Clause

The REFERENCING keyword specifies an alias for the OLD and NEW keywords.

You usually need to indicate in the action, when creating a row trigger, to reference
the value of a column before or after the trigger fires. Use the OLD and NEW
keywords to refer to values from the trigger table, in cases where tables named OLD

and NEW already exist in a database, use the alias specified by the REFERENCING
keyword.

The FOR EACH ROW keyword specifies a trigger to fire once for each row the

trigger event modifies. Triggers defined using the FOR EACH ROW keyword do not
fire if the statement firing the trigger does not process rows.

The WHEN keyword specifies that only rows satisfying the search condition will

cause the trigger to fire. The WHEN clause is evaluated for each row the trigger event
modifies. If the search condition is true, the trigger fires for that row. If the search
condition is false, the trigger does not fire. The result of the WHEN condition only

affects the execution of the triggered action, it has no effect on the statement that fires
the trigger.

old_nameAlias for referencing the values, as they existed in the trigger table

before the trigger action fires

 new_name Alias for referencing the values, as they exist in the trigger table
 after the trigger action fires

search_condition Conditions a row must meet for a trigger to fire

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-163

REFERENCING

NEW AS new_name

OLD AS old_name

NEW AS new_name

OLD AS old_name

FOR EACH ROW
WHEN (search_condition)

Figure 3-64 For Each Row Clause syntax

For Each Statement Clause

The FOR EACH STATEMENT keyword specifies that a trigger will fire once for

each statement firing it. Triggers defined using the FOR EACH STATEMENT
keyword will fire even if the statement firing it does not process rows.

The statement that the trigger executes when it fires is known as the trigger action.

The trigger action may be an INSERT, UPDATE, DELETE, or EXECUTE
PROCEDURE statement. If you want to use built-in functions when specifying the
trigger action, only use functions that have no argument, such as PI(), NOW(), or

USER(). Stored procedures executed by a trigger cannot contain any transaction
control statements COMMIT, ROLLBACK, or SAVEPOINT.

It is possible to create multiple triggers for each trigger event on the trigger table using

the trigger action time, BEFORE and AFTER keywords, in combination with the
trigger type, FOR EACH ROW and FOR EACH STATEMENT keywords. For
example, combine the trigger action time and the trigger type to create four triggers

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-164

for the INSERT trigger event BEFORE/FOR EACH STATEMENT, BEFORE/FOR
EACH ROW, AFTER/FOR EACH ROW, AFTER/FOR EACH STATEMENT.
The same combinations for the UPDATE and DELETE trigger events may be

performed.

Using the UPDATE OF instead of UPDATE will create at most, one trigger for each
column in the table for each time/trigger type combination. This means that a table

with four columns can have four UPDATE OF triggers for each combination
BEFORE/FOR EACH STATEMENT, BEFORE/FOR EACH ROW, AFTER/FOR
EACH ROW, and AFTER/FOR EACH STATEMENT. When using UPDATE OF

to specify a trigger, the use of UPDATE is not permitted.

Trigger names must be unique for each table, have a maximum of 128 characters, and
may contain numbers, letters, the underscore character and symbols $ and #. The first

character may not be a number.

FOR EACH STATEMENT

Figure 3-65 For Each Statement Clause syntax

 Example 1

The following creates an UPDATE trigger named Trig_update on the Employeesinfo
table that places the values before and after the update, into another table called
NameChange. The trigger fires before the trigger action for each row updated in the

table and fires regardless of the sequence of columns updated.
dmSQL> CREATE TRIGGER Trig_update BEFORE UPDATE ON Employeesinfo
 FOR EACH ROW
 (INSERT INTO NameChange
 VALUES (OLD.FName, OLD.LName,
 NEW.FName, NEW.LName));

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-165

 Example 2

The following creates an INSERT trigger named Trig_insert on the Employeesinfo
table that executes the stored procedure called SendMail when inserting a new row in
the Employeesinfo table and uses the REFERENCING keyword to provide an alias

for the OLD and NEW keywords. The trigger will fire after the trigger action for each
row inserted into the table.
dmSQL> CREATE TRIGGER Trig_insert AFTER INSERT ON Employeesinfo
 REFERENCING OLD AS pre NEW AS post
 FOR EACH ROW
 (EXECUTE PROCEDURE SendMail(pre.FName,
 pre.LName,
 WelcomeMessage));

 Example 3

The following creates an UPDATE trigger named Trig_update on the Orders table
that executes the stored procedure called LogTime when updating the Orders table,

and will fire before the trigger action only once, regardless of how many rows the
trigger action updates.
dmSQL> CREATE TRIGGER Trig_update BEFORE UPDATE ON Orders
 FOR EACH STATEMENT
 (EXECUTE PROCEDURE LogTime);

 Example 4

Suppose that the database have two table tb_staff and tb_change as follow:
dmSQL> CREATE TABLE tb staff (FName char(10), LName char(10));
dmSQL> CREATE TABLE tb_change (new_FName char(10), new_LName char(10), old_FName
 char(10), old_LName char(10));

Create or replace trigger trig_update.
dmSQL> CREATE OR REPLACE TRIGGER trig_update BEFORE UPDATE ON tb_staff
 FOR EACH ROW (INSERT INTO tb change VALUES (NEW.FName, NEW.LName,
 OLD.FName, OLD.LName));

_

_

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-166

3.49 CREATE VIEW
The CREATE VIEW command creates a new view based on existing tables or views.
Only the owner of the base table with the RESOURCE privilege or users with, view,
or SELECT privilege for the table may execute the command.

A view is a virtual table based on existing tables or views. Views appear to users like a
real table with named columns and rows of data. Unlike a real table, the view is not
stored permanently in the database. The data visible through a view is not physically

stored in the database, but is instead stored in the original tables. Views are stored in
the database as a definition and a user-defined view name. The view definition is an
SQL query that DBMaker uses to access data from the original tables whenever using

a view.

Use a view to tailor the appearance of a database to provide each user with a
personalized view of a database. Provide security and restricted access to data by

allowing users to see only the data they are authorized to see. Views also isolate users
from changes to the underlying structure of the database. They present a consistent
image of the database even if the underlying tables have changed.

Views can simplify the organization of a database by joining or grouping related data
from several tables and presenting it as a single table. Use views to provide a subset of
rows stored in the base table by having a condition on the returned results.

There are two disadvantages to using views instead of a real table, the performance,
and the restrictions on updates. Performance is not as good for queries on a view as it
is for queries directly on the source tables. The database must first retrieve the view

definition, build it into the original query, perform the query, and then display the
results. There are also update restrictions imposed by using views, since the database
may not be able to manage updates on complicated views.

The SELECT statement that defines the view cannot contain INTO clauses.
Currently DBMaker can update a view if that view is based on a single table.

Specify a list of column names for a view. The number of column names that are

specified must match the number of columns in the SELECT statement. If not

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-167

specifying a list of column names, the view inherits the column names from the
underlying tables.

View names and column names have a maximum of 128 characters and may contain

numbers, letters, underscore characters, and symbols $ and #. The first character may
not be a number.

OR REPLACE: specify OR REPLACE to re-create the view that already exists, that is

to say, you can use this clause to change the definition of an existing view.

view_name............... Name of the new view to create

column_name Name of a column in the view

select_statement Select statement that specifies view contents

CREATE. OR REPLACE
VIEW view_name

(
,

)
AS

Select_statement

(select_statement) .
cloumn_name

Figure 3-66 CREATE VIEW syntax

 Example

To create a view named View_Emp on the Employeesinfo table, you can use the
following syntax:
dmSQL> CREATE VIEW View_Emp AS SELECT Name, Salary from Employeesinfo WHERE
Salary > 50000;

or:
dmSQL> CREATE OR REPLACE VIEW View Emp AS SELECT Name, Salary from Employeesinfo
WHERE Salary >= 100000;

_

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-168

3.50 DECLARE SET
The DECLARE SET command defines a connection variable used in local
connection. Only the user in this local connection can execute the command and the
variable is enabled only in local connection.

CV is a connection variable that only can be defined in local connections. Connection
variables in a connection are independent of those in other connections, that is to say,
the connection variables only can be used by the connection that owned them and

cannot be got or used by other connections.

For users, a connection variable is a global variable of sql command in the local
connection, and the connection variables can be used in the dmsql command line tool

and sqlsp. Once connection to the database disconnects, all connection variables will
be automatically freed.

Executing this command can store a value defined by type and value. The CV can

replace the expression value in every SQL command.

To use the CV, users must add the symbol @ before the variable name, otherwise the
dmsql will recognized the variable name as a column name or other identifier. CV

name is not case sensitive.

data_typeData type to use for the CV

@variable_nameVariable name

expressionThe result of the expression is a value of the variable name

The expression includes not only the assignment value in simple expression, but also C
and Lua functions, such as build-in functions and user-defined functions.

 . @ variable_ name expressionDECLARE SET .data_type =

Figure 3-67 DECLARE SET syntax

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-169

 Example 1

To create a connection variable named aa and set the value to 1, the type to int.
dmSQL> DECLARE SET INT @aa = 1;
dmSQL> SELECT @aa;
 @AA
========================

1

 Example 2

To create a connection variable named bb and set the value to 'syscom', the type to
char(20).
dmSQL> DECLARE SET CHAR(20) @bb = 'syscom';
dmSQL> SELECT @bb;
 @BB
========================
SYSCOM

 Example 3

To create a connection variable named cc and set the value to an expression.
dmSQL> DECLARE SET INT int @cc1 = 100+200;
dmSQL> DECLARE SET INT @cc2 = @cc1+300;
dmSQL> SELECT @cc1;
 @CC1
========================

300
dmSQL> SELECT @cc2;
 @CC2
========================

600

 Example 4

To create a connection variable named dd and set the value to an expression.
dmSQL> DECLARE SET CHAR(40) @dd = CONCAT('abcd','efgh');
dmSQL> SELECT @dd;
 @DD
========================
abcdefgh

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-170

 Example 5

To create a connection variable named ee and set the value to an expression.
dmSQL> DECLARE SET DOUBLE @ee = 9.999999*100;
dmSQL> SELECT @EE;
 @EE
========================
9.99999900000000e+002

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-171

3.51 DELETE
The DELETE command deletes all rows matching the search condition from a table.
Only rows from a single table may be deleted. Rows from the system tables may not
be deleted. Only the table owner, a DBA, a SYSDBA, a SYSADM, or a user with the

delete privilege on the table may execute the command. DBMaker only deletes rows
that satisfy the search condition. Cursors are only available within ODBC programs.

See the WHERE clause in the SELECT command for more information on the search

condition.

table_name Name of the table you want to delete rows from

search_condition Conditions a row must meet to be deleted

cursor_name Name of the cursor to use for a positioned delete

WHERE
search_condition

CURRENT OF cursor_name

DELETE FROM table_name

Figure 3-68 DELETE syntax

 Example 1

The following deletes the employee number 1234 from the Employeesinfo table.
dmSQL> DELETE FROM Employeesinfo WHERE Emp_ID = '1234';

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-172

 Example 2

The following deletes all employee names that begin with "John" from the
Employeesinfo table.
dmSQL> DELETE FROM Employeesinfo WHERE FName LIKE 'John%';

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-173

3.52 DROP COMMAND
The DROP COMMAND removes an existing stored command from the database.
Only the stored command owner or a user with DBA, SYSDBA or SYSADM security
privilege may execute the DROP COMMAND command.

A stored command is an SQL data-manipulation statement that is compiled and
permanently stored in the database in executable format. This permits repeat
execution of the stored command without waiting for DBMaker to compile and

optimize the command each time. Stored commands are similar to stored procedures,
except they can only contain a single command and cannot contain program logic.

The stored command becomes invalid and cannot be used again when dropping a

table or a column that is referenced by a stored command, alter a table and modify the
column definition, or alter a table and add a column using the BEFORE and AFTER
keywords. Altering a table and adding a column without using the BEFORE and

AFTER keywords has no impact on a stored command. Drop an invalid stored
command to remove it from the database.

IF EXISTS: It will ensure that not throw an error while the stored command does not

exist.

command_name Name of the stored command to remove from the database

DROP COMMAND. IF EXISTS
command_name .

Figure 3-69 DROP COMMAND syntax

 Example

Drop the stored command named sc_select with the following syntax:
dmSQL> DROP COMMAND sc_select;

or:

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-174

dmSQL> DROP COMMAND IF EXISTS sc_select;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-175

3.53 DROP DATABASE LINK
The DROP DATABASE LINK command removes an existing public or private
database link from the database. Only the owner of a private link may drop his or her
own private link and only a user with DBA, SYSDBA or SYSADM security privilege

can drop a Public link.

A database link creates a connection to a remote database to provide access to remote
data. Links provide the benefit of security information, allowing connections to a

remote database with a user name different from a local one, or connect to a remote
database using a public link with no account.

The PUBLIC/PRIVATE keywords are optional. These keywords specify the type of

database link to drop, public or private. Public links are available to all users in a
database. Private links are available only to the user that creates them. When no
specific type of link is specified, DBMaker tries to drop a private link by default.

link_name Name of the link to remove from the database

DROP link_name

PRIVATE

PUBLIC

DATABASE LINK

Figure 3-70 DROP DATABASE LINK syntax

 Example 1

The following drops the private link named FieldLink.
dmSQL> DROP PRIVATE DATABASE LINK FieldLink;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-176

 Example 2

The following drops the public link named FieldLink.
dmSQL> DROP PUBLIC DATABASE LINK FieldLink;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-177

3.54 DROP DOMAIN
The DROP DOMAIN command removes an existing domain from the database.
Only the domain owner or a user with DBA, SYSDBA or SYSADM security privilege
can execute the DROP DOMAIN command.

A domain is a user-defined data type that brings together a data type, default value,
and value constraint. Use a domain in the column definition of CREATE TABLE or
ALTER TABLE ADD COLUMN statements in place of a data type to define the set

of valid values that can be entered into the column.

A domain cannot be dropped if there are existing columns in a table that were defined
using the domain. To drop a domain that is referenced by existing columns, first drop

all columns that reference the domain. Do this by dropping the entire table and then
recreating the table without the domain, or by dropping a single column using the
ALTER TABLE DROP COLUMN command.

The CASCADE/RESTRICT keywords are optional. These keywords denote whether
to remove or check dependent objects refered to in the the dropped domain. When
the CASCADE keyword is specified, it will remove all the dependent objects with the

domain and replace the column definition with the domain definition. When the
RESTRICT keyword is specified, it will not drop a domain that is referred in any
table definition. The RESTRICT keyword ensures that only a domain with no

dependent objects can be deleted.

domain_name Name of the domain to remove from the database

DROP DOMAIN domain_name
CASCADE

RESTRICT

Figure 3-71 DROP DOMAIN syntax

 Example

The following example removes the domain named ValidDate.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-178

dmSQL> DROP DOMAIN ValidDate;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-179

3.55 DROP GROUP
The DROP GROUP command removes an existing group from the database. Only
users with DBA, SYSDBA or SYSADM security privileges can execute the DROP
GROUP command.

Groups simplify the management of object privileges in a database with a large
number of users. Use a group to collect users that require the same object privileges.
Any object privileges granted to the group are automatically granted to all members in

the group. DBMaker also provides support for nested groups, a group as a member of
another group, provided there are no circular references from the member group to
the other group.

When a group is removed from a database, all members lose privileges granted to that
group. Members retain all other privileges granted to them directly or to other groups
they are members of. The PUBLIC group cannot be removed; DBMaker manages this

group internally.

group_name Name of the group to remove from the database

DROP GROUP group_name

Figure 3-72 DROP GROUP syntax

 Example

The following removes the group named Manager from the database.
dmSQL> DROP GROUP Manager;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-180

3.56 DROP INDEX
The DROP INDEX command removes an existing index on a table from the
database. Only the table owner, a DBA, a SYSDBA, a SYSADM, or a user with the
INDEX privilege for that table may execute the DROP INDEX command.

An index is a mechanism that provides fast access to specific rows in a table based on
the values of one or more columns from the table, known as the key. Indexes contain
the same data as the key columns from the table they are based on, but the data is

structured and sorted to make retrieval much faster than the table. Once creating an
index, its operation is transparent to users; the DBMS uses the index to improve query
performance whenever possible.

Drop an index from any table in the database except the system tables. If an index has
foreign keys that refer to it, drop those foreign keys before dropping the index. Drop
an index if it becomes fragmented, which reduces its efficiency. Rebuilding the index

creates a denser, unfragmented index.

index_nameName of the index to remove

table_nameName of the table to remove the index from

DROP INDEX index_name FROM table_name

Figure 3-73 DROP INDEX syntax

 Example

The following drops the index named NameIndex from the Employeesinfo table; if
there are any foreign keys, which refer to NameIndex, drop them before dropping
NameIndex.
dmSQL> DROP INDEX NameIndex FROM Employeesinfo;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-181

3.57 DROP PROCEDURE
The DROP PROCEDURE command removes an existing procedure from the
database. Only the table owner, a DBA, a SYSDBA, a SYSADM, or a user with the
PROCEDURE privilege for that table may execute the DROP PROCEDURE

command.

IF EXISTS: It will ensure that no error is throwed if the store procedure does not
exist.

procedure_name Name of the procedure to remove from the database

. .DROP PROCEDURE
 IF EXISTS

procedure_ name

Figure 3-74 DROP PROCEDURE syntax

 Example

Drop the stored procedure sp_proc1 with the following syntax:
dmSQL> DROP PROCEDURE sp_proc1;

or:
dmSQL> DROP PROCEDURE IF EXISTS sp_proc1;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-182

3.58 DROP REPLICATION
The DROP REPLICATION command removes an existing table replication from the
database. Only the table owner or a user with DBA, SYSDBA or SYSADM security
privilege can execute the DROP REPLICATION command.

A table replication creates a full or partial copy of a table in a remote location. This
allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the databases in other locations. This way each database

can service data requests immediately and efficiently, without having to go to another
machine over a slower network connection. This is not the same as backing up the
database to a remote location, since the synchronization is done on a transaction-by-

transaction basis by the DBMS itself, without any intervention from users.

There are two primary types of table replication, synchronous and asynchronous.
Synchronous table replication modifies the remote table at the same time it modifies

the local table, while asynchronous table replication stores changes to the local table
and modifies the remote table based on a schedule. Use the DROP REPLICATION
command to drop both synchronous and asynchronous table replications.

replication_nameName of the table replication to remove

table_nameName of the table to remove the replication from

DROP REPLICATION replication_name FROM table_name

Figure 3-75 DROP REPLICATION syntax

 Example

The following example drops the replication named EmpRep from the Employeesinfo

table.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-183

dmSQL> DROP REPLICATION EmpRep FROM Employeesinfo;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-184

3.59 DROP SCHEDULE
The DROP SCHEDULE command removes an existing replication schedule to a
remote database. Drop all associated asynchronous table replications before dropping a
replication schedule. Only the local table owner or a user with DBA, SYSDBA or

SYSADM security privilege can execute the DROP SCHEDULE command.

Use the DROP SCHEDULE command to drop a replication schedule for
asynchronous table replications. Drop all associated asynchronous table replications

before dropping a replication schedule. This would include any asynchronous table
replication that replicates data to the remote database specified in the schedule.

remote_database_name….Name of the remote database to remove the replication

schedule from

DROP SCHEDULE FOR REPLICATION TO remote_database_name

Figure 3-76 DROP SCHEDULE syntax

 Example

The following drops the replication schedule for the remote database named
DivOneDb.
dmSQL> DROP SCHEDULE FOR REPLICATION TO DivOneDb;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-185

3.60 DROP SCHEMA
The DROP SCHEMA command removes a schema from the current database system.
A schema is essentially a namespace: it contains named objects, also known as schema
objects, (tables, view, index, synonym, trigger, domain, command, procedure) whose

names may duplicate those of other objects existing in other schemas. Schema objects
are accessed by qualifying their names with the schema name as a prefix.

Only users who created the schema or users with DBA authority can drop a schema

from the database.

The schema to be removed must be empty. A schema containing schema objects
cannot be dropped. Before attempting to drop a schema, drop all schema objects

contained in the schema.

The CASCADE/RESTRICT keywords are optional. These keywords denote whether
to remove or check dependent objects refered to in the schema to be dropped. When

the CASCADE keyword is specified, it will remove all the dependent objects with the
schema. When the RESTRICT keyword is specified, it will ensure that only a schema
with no dependent objects can be deleted.

schema_name The name of the schema to be removed

DROP SCHEMA schema_name
CASCADE

RESTRICT

Figure 3-77 DROP SCHEMA syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-186

3.61 DROP SYNONYM
A synonym is an alias that can be used for a table or view. A synonym requires no
storage space, other than its definition in the system catalog. More than one synonym
can be created for a table or view, but all synonym names must be unique. The DROP

SYNONYM command removes a synonym from a table or view. Only the synonym
owner or a user with DBA, SYSDBA or SYSADM security privilege can execute the
DROP SYNONYM command.

DBMaker normally identifies tables and views with fully qualified names that are a
composite of the owner name and object name. To help simplify statements that use
fully qualified table and view names, DBMaker provides the usage of synonyms.

This allows users to refer to synonym names without prefixing an owner name.
DBMaker will always use the table name and ignore a synonym with the same name.
To use the table referenced by a synonym, provide the fully qualified name. All

synonyms on a table or view are automatically dropped when a referenced table or
view are dropped.

A synonym from any table in the database may be dropped, except for system tables.

DBMaker internally manages all synonyms on the system tables, and does not permit
dropping them.

IF EXISTS: It will ensure that not throw an error while the synonym does not exist.

synonym_nameName of the synonym to remove from the database

DROP SYNONYM
 IF EXISTS

synonym_name

Figure 3-78 DROP SYNONYM syntax

 Example

Drops the synonym named Staff created on the Employeesinfo table with the
following syntax:

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-187

dmSQL> DROP SYNONYM Staff;

or:
dmSQL> DROP SYNONYM IF EXISTS Staff;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-188

3.62 DROP TABLE
The DROP TABLE command removes a table. Only the table owner or a user with
DBA, SYSDBA or SYSADM security privilege can execute the DROP TABLE
command.

When dropping a table, DBMaker also drops all indexes and primary keys on the
table. If the table has a primary key that is referenced by one or more foreign keys,
drop all foreign keys that reference the primary key before dropping the table.

The CASCADE/RESTRICT keywords are optional. These keywords denote whether
to remove or check dependent objects refered to in the table to be dropped. When the
CASCADE keyword is specified, it will remove all the dependent objects with the

table. When the RESTRICT keyword is specified, it will ensure that only a table with
no dependent objects can be deleted.

IF EXISTS: It will ensure that no error is throwed if the table does not exist.

table_nameName of the table to drop from the database

CASCADEIt will remove the dependent objects as index, foreign key,
synonym, view and trigger with the table

RESTRICTIt will ensure that only a table with no dependent objects as
index, foreign key, synonym, view and trigger can be deleted

. .DROP TABLE
 IF EXISTS

table_ name

RESTRICT

CASCADE

Figure 3-79 DROP TABLE syntax

 Example

Drops the Employeesinfo table with the following syntax:
dmSQL> DROP TABLE Employeesinfo;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-189

or:
dmSQL> DROP TABLE IF EXISTS Employeesinfo;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-190

3.63 DROP TABLESPACE
The DROP TABLESPACE command removes a tablespace. Only users with DBA,
SYSDBA or SYSADM security privilege can execute the DROP TABLESPACE
command.

When dropping a tablespace, DBMaker automatically drops all logical files in the
tablespace. Use operating system commands to manually remove the physical files that
correspond to logical files and free the disk space. If a tablespace contains tables, drop

all tables in the tablespace before dropping the tablespace.

tablespace_nameName of the tablespace to drop from the database

DROP TABLESPACE tablespace_name

Figure 3-80 DROP TABLESPACE syntax

 Example

The following drops the ts_emp tablespace, drop all tables in the tablespace before
dropping the tablespace.
dmSQL> DROP TABLESPACE ts_emp;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-191

3.64 DROP TEXT INDEX
The DROP TEXT INDEX command removes an existing signature or IVF text index
on a column in a table from the database. Only the table owner, a DBA, a SYSDBA, a
SYSADM, or a user with the INDEX privilege for the table may execute the DROP

TEXT INDEX command.

A text index is a mechanism that provides fast access to rows in a table that contains
one or more words or phrases in columns containing text. Text indexes contain a

representation of all the text found in the text columns they are based on, but the data
is encoded and structured to make retrieval much faster than directly from the table.
Once a text index is created for a table, its operation is transparent to users of the

database; the DBMS uses the index to improve full-text query performance whenever
possible.

text_index_name Name of the text index to remove

table_name Name of the table to remove the text index from

DROP TEXT INDEX text_index_name FROM table_name

Figure 3-81 DROP TEXT INDEX syntax

 Example

The following drops the text index named TxtIdx from the Employeesinfo table.
dmSQL> DROP TEXT INDEX TxtIdx FROM Employeesinfo;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-192

3.65 DROP TRIGGER
The DROP TRIGGER command removes a trigger. Only the table owner or a user
with DBA, SYSDBA or SYSADM security privilege can execute the DROP
TRIGGER command.

A trigger is a database server mechanism that automatically executes predefined
commands in response to specific events. This allows a database to perform complex
or unconventional operations that might not be possible using standard SQL

commands. Since triggers are under the control of the database server, they can ensure
data is handled consistently regardless of the source. A trigger operation is transparent
to users of the database DBMaker fires the trigger every time a user or application

program generates a trigger event.

When dropping a table or a column that is referenced by a trigger, altering a table and
modify the column definition, or altering a table and adding a column using the

BEFORE and AFTER keywords, the trigger becomes invalid and cannot be used
again. Altering a table and adding a column without using the BEFORE and AFTER
keywords has no impact on a trigger. Drop an invalid trigger to remove it from the

database. Any triggers created on a table are dropped automatically when a table is
dropped.

IF EXISTS: It will ensure that no error is throwed if the trigger does not exist.

trigger_nameName of the trigger to remove

table_nameName of the table to remove the trigger from

DROP TRIGGER. IF EXISTS
trigger_name .table_ nameFROM

Figure 3-82 DROP TRIGGER syntax

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-193

 Example

Drops the trigger named Trig_emp from the Employeesinfo table with the following
syntax:
dmSQL> DROP TRIGGER Trig_emp FROM Employeesinfo;

or:
dmSQL> DROP TRIGGER IF EXISTS Trig_emp FROM Employeesinfo;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-194

3.66 DROP VIEW
The DROP VIEW command removes a view. Only the view owner or a user with
DBA, SYSDBA or SYSADM security privilege can execute the DROP VIEW
command.

When a view is dropped, DBMaker will invalid all views based on that view. System
views may not be dropped.

The CASCADE/RESTRICT keywords are optional. These keywords denote whether

to remove or check dependent objects refered to in the view to be dropped. When the
CASCADE keyword is specified, it will remove all the dependent objects with the
view. When the RESTRICT keyword is specified, it will not drop view that is referred

in any view definition or synonym. The RESTRICT ensures that only a view with no
dependent objects can be deleted.

IF EXISTS: It will ensure that no error is throwed if the view does not exist.

view_nameName of the view to remove from the database

DROP VIEW. IF EXISTS
view_ name .

RESTRICT

CASCADE

Figure 3-83 DROP VIEW syntax

 Example 1

Drops the view named SalesStaff with the following syntax:
dmSQL> DROP VIEW SalesStaff;

or:
dmSQL> DROP VIEW IF EXISTS SalesStaff;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-195

 Example 2

The following will not drop the view named SalesStaff when any synonym or view
references it.
dmSQL> DROP VIEW SalesStaff RESTRICT;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-196

3.67 END BACKUP
The END BACKUP command ends the backup state DBMaker places the database in
during an online backup. Only users with DBA, SYSDBA or SYSADM security
privileges can execute the END BACKUP command.

To perform an online full backup, start the database in NON-BACKUP, BACKUP-
DATA, or BACKUP-DATA-AND-BLOB mode. To begin the backup, issue the
BEGIN BACKUP command. Use operating system commands or backup utilities to

back up all data and BLOB files to the backup device. After these files have been
backed up, issue the END BACKUP DATAFILE command. Then use operating
system commands or backup utilities to back up all Journal files. After these files have

been backed up, issue the END BACKUP JOURNAL command to complete the
backup and return the database to normal operation. Using an online full backup, can
restore a database from the point in time the END BACKUP DATAFILE command

was executed to the point in time the currently active Journal file was copied.
BEGIN BACKUP; //copy all data files by manually
END BACKUP DATAFILE; //copy all journal files by manually
END BACKUP JOURNAL; //thus, a full backup completed

To perform an online differential backup, start the database in NON-BACKUP,
BACKUP-DATA, or BACKUP-DATA-AND-BLOB mode. Users can do the

differential backup without the manual backup method. Please note, a differential
backup is based on the most recent full backup and contains only the data that has
changed since the time the differential base was created.

To perform an online incremental backup or an online incremental backup to current,
the database must have been started in BACKUP-DATA or BACKUP-DATA-AND-
BLOB mode.

Abort an online backup at any time by issuing the ABORT BACKUP command; for
more information, see the ABORT BACKUP command. After executing the ABORT
BACKUP command, the files from this backup may not be used to restore the

database. Delete these backup files so they will not be confused with files from valid
backups when you are restoring your database.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-197

END BACKUP
DATAFILE

JOURNAL

Figure 3-84 END BACKUP syntax

 Example

The following shows the steps involved in a full online backup. To begin, issue the

BEGIN BACKUP command to notify DBMaker that a full backup is in progress, and
then copy all data and BLOB files to the backup location. Once the files are copied,
issue the END BACKUP DATAFILE command. Then copy all Journal files to the

backup location. Once the files are copied, issue the END BACKUP JOURNAL
command. Following this command the database will return to normal operation.
BEGIN BACKUP
 Copy data and BLOB files to backup location using OS commands
 Change backup mode if desired
 Abort the backup if desired
END BACKUP DATAFILE
 Copy Journal files to backup location using OS commands
 Change the backup mode if desired
 Abort the backup if desired
END BACKUP JOURNAL

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-198

3.68 EXECUTE COMMAND
The EXECUTE COMMAND executes a stored command. Use stored commands to
quickly execute frequently used SQL data-manipulation statements without. Only a
DBA, a SYSDBA, a SYSADM, or a user with the EXECUTE privilege may execute

the EXECUTE COMMAND command.

A stored command is an SQL data-manipulation statement that is compiled and
permanently stored in the database in an executable format. This permits repeated

execution of the stored command without waiting for DBMaker to compile and
optimize it. Stored commands are similar to stored procedures, except they can only
contain a single command and cannot contain program logic.

Use host variables as placeholders for column values in the SQL statement of a stored
command. This permits assigning actual values to the column executing the
command, instead of when creating it. To use host variables in a stored command,

replace any data or column value with a question mark symbol (?).

To execute a stored command that has host variables use constants: results from built-
in functions, the NULL keyword, the DEFAULT keyword, or another host variable.

Only use built-in functions that have no argument, RAND(), PI(), CURDATE(), or
NOW(), when providing a value for a host variable. Use a NULL value for the host
variable. The value represented by the host variable must be capable of accepting

NULL values. The number of parameters provided when executing a stored command
must equal the number of host variables in the command definition.

command_nameName of the stored command to execute

valueInput parameter that corresponds to a host variable in the stored
command

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-199

EXECUTE COMMAND command_name

value

,
)(

Figure 3-85 EXECUTE COMMAND syntax

 Example 1

The following executes the stored command named sc_select. This stored command
has no input parameters.
dmSQL> EXECUTE COMMAND sc_select;

 Example 2

The following executes the stored command named sc_input; the command has two

input parameters that provide a value.
dmSQL> EXECUTE COMMAND sc_input(10002, 10006);

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-200

3.69 GRANT (Execute Privileges)
The GRANT command grants execute privileges on executable database objects to
individual users. Only the object owner or a user with DBA, SYSDBA or SYSADM
security privilege can execute the command.

EXECUTE privileges control which executable database objects a user can use.
DBMaker has three types of executable objects: stored commands, stored procedures,
and projects.

The COMMAND keyword specifies the object as a stored command. Only users with
all security and object privileges necessary to execute the SQL statement that makes up
the stored command and the EXECUTE privilege may use this command.

The PROCEDURE keyword specifies an object being granted the EXECUTE
privilege as a stored procedure. Only the EXECUTE privilege on the stored procedure
is required.

The PROJECT keyword specifies an object being granted the EXECUTE privilege as
a project containing one or more stored procedures. Granting EXECUTE privilege on
a project automatically grants EXECUTE privileges on all procedures in that project.

The user who creates an executable database object is the owner of that object. The
owner and any DBA, SYSDBA or SYSADM automatically have EXECUTE privileges
on that object. To grant the EXECUTE privilege to all users grant the privilege to

PUBLIC. All current and future users will then have the EXECUTE privileges on the
executable database object.

executable_nameName of the executable object to grant execute privileges on

user_nameGrant execute privileges to user user_name

group_nameGrant execute privileges to group group_name

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-201

GRANT executable_name

TO

EXECUTE ON
COMMAND

PROCEDURE
PROJECT

,

user_name

PUBLIC
group_name

Figure 3-86 GRANT (Execute Privileges) syntax

 Example 1

The following grants the EXECUTE privilege on the stored command named
ListUserTables to the user named Vivian.
dmSQL> GRANT EXECUTE ON COMMAND ListUserTables TO Vivian;

 Example 2

The following grants the EXECUTE privilege on the stored procedure named

ShowUsers to the users named Jenny and John, and the group Managers.
dmSQL> GRANT EXECUTE ON PROCEDURE ShowUsers TO Jenny, John, Managers;

 Example 3

The following grants the EXECUTE privilege on all stored procedures in the
InternetFunc to all users using the PUBLIC keyword.
dmSQL> GRANT EXECUTE ON PROJECT InternetFunc TO PUBLIC;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-202

3.70 GRANT (Object Privileges)
The GRANT command grants access privileges on database objects to individual
users. Only the object owner or a user with DBA, SYSDBA or SYSADM security
privilege can execute the command.

Object privileges control which database objects a user can access and the actions they
can perform. There are seven object privileges: SELECT, INSERT, DELETE,
UPDATE, INDEX, ALTER, and REFERENCE. The keywords ALL and ALL

PRIVILEGES can also be used to simultaneously grant privileges on an object.

• SELECT privilege selects data in a database object. It applies to the entire object
and cannot be granted to specific columns.

• INSERT privilege inserts new data into a database object. It can be restricted to
specific columns.

• DELETE privilege deletes data from a database object. It applies to the entire

object and cannot be granted on specific columns.

• UPDATE privilege updates data in a database object. It can be restricted to
specific columns.

• INDEX privilege creates an index on a database object. It applies to the entire
object and cannot be granted on specific columns.

• ALTER privilege alters the schema of a database object. It applies to the entire

object and cannot be granted on specific columns.

• REFERENCE privilege creates referential constraints, such as foreign keys, on a
database object. It can be restricted to specific columns.

The user who creates a schema object is the owner of that object. The owner and any
DBA, SYSDBA or SYSADM is automatically granted all object privileges. System
catalog tables belong to a special virtual user called SYSTEM. All users including the

SYSADM have only SELECT privilege on system catalog tables. Additional object
privileges on the system catalog tables may not be added.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-203

Privileges on specific columns and on the entire database object cannot be granted at
the same time. Use the command twice, once to grant privileges on specific columns,
and once to grant privileges on the entire table. It is possible to grant object privileges

to all users simultaneously by granting the privileges to PUBLIC. All current and
future users will then have those privileges for the database object.

column_name Name of the column to grant object privileges on

table_name Name of the table to grant object privileges on

user_name Name of the user to grant object privileges to

group_name Name of the group to grant object privileges to

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-204

GRANT column_name

,
)(

,

UPDATE

REFERENCE
INSERT

,

DELETE

INDEX
UPDATE

SELECT

REFERENCE
ALTER

INSERT

ALL
PRIVILEGES

ON table_name TO

,

user_name

PUBLIC
group_name

Figure 3-87 GRANT (Object Privileges) syntax

 Example 1

The following grants SELECT, INSERT, and UPDATE object privileges on the
Checks table to the user named Vivian.
dmSQL> GRANT SELECT, INSERT, UPDATE ON Checks TO Vivian;

 Example 2

The following grants INSERT, UPDATE, and REFERENCE privilege on the
Amount, PayDate columns of the Checks table to the user named Jenny.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-205

dmSQL> GRANT INSERT, UPDATE, REFERENCE (Amount, PayDate) ON Checks TO Jenny;

 Example 3

The following grants all object privileges on the table Checks to the user named John.
dmSQL> GRANT ALL ON Checks TO John;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-206

3.71 GRANT (Security Privileges)
The GRANT command creates new users or changes the security privileges of existing
users. Only users with SYSADM or SYSDBA security privileges may execute the
command. When creating a database DBMaker will create the SYSADM default user

with no password. Change the SYSADM password immediately after creating the
database to prevent unauthorized access. The SYSADM user is the only authorized
user in the database until security privileges are granted to other users.

The SYSADM can grant CONNECT, RESOURCE, DBA, SYSDBA and ACCESS
security privileges to a user. Granting CONNECT security privilege effectively adds a
new user name to the database. Once a user name exists, the SYSADM may grant

higher security to that user. Users with higher authority have all privileges of users
with lower authority. Only users with SYSADM or SYSDBA security privilege can
grant security privileges to other users. The SYSADM has all privileges of the

SYSDBA authority level, and the SYSDBA authority must be granted by users with
SYSADM authority.

CONNECT security privilege is necessary before a user can connect to a database.

Once a user is granted the CONNECT security privilege they have been added to the
database as a user. All users must be granted CONNECT security privilege before they
can be granted any other security privileges. A user with CONNECT security

privilege may create temporary tables in a database, or perform queries on any data
they have been granted permission.

RESOURCE security privilege allows a user to create, alter, and drop tables, domains,

and indexes. As the owner of any objects they create, users with RESOURCE privilege
may grant and revoke object privileges to other users and create synonyms and views
for any objects they own.

The DBA privilege has the same capabilities as the RESOURCE privilege, but may
also create tablespaces and files. Users with the DBA privilege can also grant or revoke
object privileges for schema objects owned by other users, except system schema

objects.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-207

The SYSDBA privilege has the same capabilities as the DBA privileges, but can also
grant CONNECT, RESOURCE, DBA and ACCESS security privileges to a user,
grant, change, or revoke privileges of objects owned by users with DBA authority, and

change other users' passwords except SYSADM and other SYSDBA.

User names have a maximum length of 128 characters and passwords have a
maximum length of 16 characters. Passwords can contain letters, numbers, the

underscore character, and the symbols $ and #, but the first character cannot be a
number.

The ACCESS/ALLOW privilege allows a user to connect to database from certain IPs.

This can protect your database and avoid malicious connections. The IP is a standard
Internet Protocol format. It only contains numbers and '*'.

The BLOCK privilege forbids a user to connect to database from certain IPs. This can

protect your database and avoid malicious connections. The IP is a standard Internet
Protocol format. It only contains numbers and '*'.

user_name Name of the user to grant security privileges to

password Password of the user when connecting to the database

ip_address Address of the user to grant security privileges from

GRANT

DBA

SYSDBA

TO
,

user_name

RECOURCE

ACCESS ,
ip_address

,

user_name
BLOCK
ALLOW TO

user_name
password

,

CONNECT TO

Figure 3-88 GRANT (Security Privileges) syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-208

 Example 1

The following grants the CONNECT privileges to users named vivian and jenny with
no password.
dmSQL> GRANT CONNECT TO vivian, jenny;

 Example 2

The following grants the CONNECT privilege to a user named vivian with the
password shuka828 and a user named jenny with the password grala833.
dmSQL> GRANT CONNECT TO vivian shuka828, jenny grala833;

 Example 3

The following grants the RESOURCE privilege to users vivian and jenny.
dmSQL> GRANT RESOURCE TO vivian, jenny;

 Example 4

The following grants the DBA privilege to users vivian and jenny.
dmSQL> GRANT DBA TO vivian, jenny;

 Example 5

The following grants the ACCESS privilege to the users vivian and jenny with the

addresses 192.4.55.3 and 219.3.44.*.
dmSQL> GRANT ACCESS TO vivian,jenny '192.4.55.3','219.3.44.*';

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-209

3.72 INSERT
The INSERT command inserts new rows in a table. Rows may not be inserted into
the system catalog tables. Only the table owner, a DBA, a SYSDBA, a SYSADM, or a
user with the INSERT privilege for the entire table or for the specific column may

execute the INSERT command.

Use this command to insert a single row by providing values using the VALUES
keyword. The values provided may be constants, the results of built-in functions, or

bound variables in a program using the ODBC API. Also, use this command to insert
a set of rows using data selected from other tables using a SELECT statement. The
rows selected must have columns with data types compatible the table.

When specifying columns to provide values for, name the columns in any order when
executing the INSERT command. Omitting the column list specifies to use all
columns, in the order created. In this case, provide a value for each column in the

table, even if the value is empty. If the values provided do not match the data type of
the column, DBMaker converts the values to the proper data type. The default value
for a column is used when a value is not provided.

Use the referential integrity rules when inserting data into a child table that has a
foreign key linking it to a parent table. Do not try to insert a value into a child key
that does not exist in the parent key, unless it is a NULL value. Insert a new row in

the parent key first.

To insert a string that contains a single quote, replace the single quote in the string
with two consecutive single quotes. Have an even number of single quotes in a value,

or DBMaker will wait for another single quote to close the string value. To insert the
default value in a row, leave the value empty or specify the default value using the
DEFAULT keyword.

OR REPLACE: The OR REPLACE option is optional. This option is used to ensure
that DBMaker will replace the old row with the new row if the two rows have the
same value for some columns. That is to say, if the row that users will insert into a

table already exists in the table (judged with the primary key or the unique index), the

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-210

old row will be deleted from the table and then the new row will be inserted into the
table, if not, the new row will be inserted directly into the table.

To use the option OR REPLACE, users must own privilege both INSERT and

DELETE at the same time.

The INSERT statement with the option OR REPLACE would return a count to
indicate the number of affected rows. This is the sum of the deleted rows and the

inserted rows.

Please note that the option OR REPLACE makes sense only when the table owns the
primary key or the unique index. If the primary key or the unique index both of which

are used to confirm whether the new row duplicates the old row, does not exist, the
INSERT statement with the option OR REPLACE becomes equivalent to that
without the option OR REPLACE, and the new row will be inserted directly into the

table when it is executed, which would result in duplicate records in the table. We do
not recommend this option if the inserted rows are the query result of other tables and
contain a large number of data, because this would reduce insertion efficiency.

In addition, we also do not recommend that users create the unique index on column
containing a large number of data, because it not only does not work in quick query,
but also may returns an error message 8332: 'expression or predicate needs too large

memory' when users execute the INSERT OR REPLACE statement to insert data.

table_nameName of the table to insert a new row into

column_nameName of the column to insert a value for

literalLiteral value to be inserted

constantConstant value to insert

bind_variableName of the bound variable to insert, with ODBC only

select_statementStatement to be selected

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-211

VALUES)

,

constant

NULL
bind_variable

(

select_statement

OR REPLACE

INSERT table_name

column_name

,
)(

INTO

Figure 3-89 INSERT syntax

 Example 1

The following inserts a row into the Employeesinfo table.
dmSQL> INSERT INTO Employeesinfo VALUES (1234, 'John', '01/01/1998', 2500);

 Example 2

The following inserts values into Emp_ID, FName, and HireDate columns.
dmSQL> INSERT INTO Employeesinfo (Emp_ID, FName, HireDate)
 VALUES (1234, 'John', '01/01/1998');

 Example 3

The following inserts rows into the Employeesinfo table that were selected from the

TempStaff table where the Emp_ID column has values greater than 10567.
dmSQL> INSERT INTO Employeesinfo (Emp_ID, FName, HireDate)
 SELECT Emp_ID, FName, HireDate FROM TempStaff WHERE Emp_ID > 10567;

 Example 4

The following inserts a row into a CHAR column containing a single quote with the
values inserted into all other columns set to the default value using the DEFAULT
keyword.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-212

dmSQL> INSERT INTO TB_TMP VALUES ('Joe''s Diner', DEFAULT, DEFAULT);

 Example 5

The following inserts a row into the Employeesinfo table that owns a primary key

Emp_ID and a unique index idx2 on column FName.
dmSQL> INSERT INTO Employeesinfo VALUES (1,'BB', '01/01/1986');

or
dmSQL> INSERT OR REPLACE INTO Employeesinfo VALUES (1,'BB', '01/01/1986');

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-213

3.73 KILL CONNECTION
The KILL CONNECTION command terminates a user connection to a database.
Only a user with DBA, SYSDBA or SYSADM security privilege can execute the KILL
CONNECTION command.

Executing this command frees all lock resources held by this user. Use this command
when a user is holding resources needed by other users for high priority operations, or
when the database administrator must shut down the database and not all users have

logged off.

connection_ID Connection number to kill

KILL CONNECTION connection_ID

Figure 3-90 KILL CONNECTION syntax

 Example

The following kills the connection for the user connection ID 12345.
dmSQL> KILL CONNECTION 12345;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-214

3.74 LOAD STATISTICS
The LOAD STATISTICS command loads statistics from a text file containing
statistical data for a DBMaker database. Create a statistics file for a database using the
UNLOAD STATISTICS command. This file may be edited using any ASCII text

editor and can be modified to provide any statistical data for testing or other purposes.
Only users with DBA, SYSDBA or SYSADM security privileges can execute the
LOAD STATISTICS command.

file_nameName of the file containing the statistical data to load

LOAD STATISTICS FROM file_name

Figure 3-91 LOAD STATISTICS syntax

 Example

The following example loads the statistics file stat.dat into the database.
dmSQL> LOAD STATISTICS FROM stat.dat;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-215

3.75 LOCK TABLE
The LOCK TABLE command controls access to a table by other users. Only the table
owner, a DBA, a SYSDBA, a SYSADM, or a user with the SELECT privileges (to lock
the table in SHARE mode) or the UPDATE or DELETE privileges (to lock the table

in EXCLUSIVE mode may execute this command.

This command locks a table in SHARE or EXCLUSIVE mode to control access to a
table. SHARE mode allows other users read access to the table but denies write access;

other users cannot insert, update, or delete rows if the table is locked in SHARE
mode. EXCLUSIVE mode denies other users both read and write access. Other users
cannot select, insert, update, or delete rows if the table is locked in EXCLUSIVE

mode.

Use this command to reduce the number of locks acquired in a database operation. If
the default lock level on a table is page or row, use this command to get a table level

lock in order to avoid getting many lower level locks. In general, there is no need to do
this since DBMaker automatically upgrades the lock level on a table if too many locks
are acquired.

The WAIT/NO WAIT keywords are optional. These keywords specify whether
DBMaker should wait to acquire a lock if the lock is not available immediately. If
specifying the NO WAIT option, DBMaker does not wait to acquire a lock and

returns an error message stating the lock could not be acquired. The amount of time
DBMaker wait is determined by the DB_LTimO keyword in the dmconfig.ini file.
The default value is WAIT.

table_name Name of the table to change the lock settings for

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-216

MODE
SHARE

EXCLUSIVE

WAIT

NO WAIT

LOCK TABLE table_name IN

Figure 3-92 LOCK TABLE syntax

 Example 1

The following locks the Employeesinfo table in SHARE mode with the WAIT

option.
dmSQL> LOCK TABLE Employeesinfo IN SHARE MODE WAIT;

 Example 2

The following locks the Employeesinfo table in EXCLUSIVE mode with the NO
WAIT option.
dmSQL> LOCK TABLE Employeesinfo IN EXCLUSIVE MODE NO WAIT;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-217

3.76 REBUILD COMMAND
The REBUILD COMMAND command rebuilds a stored command. Only users with
DBA, SYSDBA or SYSADM security privileges can execute the REBUILD
COMMAND command.

Rebuilding stored command can avoid stored command execution efficiency turn bad.
For example, if users created a stored command on a table with few records, with the
table records growing, the stored command execution efficiency will become worse.

Rebuild Stored Command function support Rebuild Stored Command Syntax and
auto rebuild while update statistics.

command_name Name of the stored command to rebuild

REBUILD COMMAND command_name

Figure 3-93 REBUILD COMMAND syntax

 Example

The following example rebuilds the stored command named sc_select.
dmSQL> REBUILD COMMAND sc_select;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-218

3.77 REBUILD INDEX
The REBUILD INDEX command rebuilds an existing index on a table. Only the
table owner, a DBA, a SYSDBA, a SYSADM, or a user with the INDEX privilege for
that table may execute the REBUILD INDEX command.

An index is a mechanism that provides fast access to specific rows in a table based on
the values of one or more columns, known as the key. Indexes contain the same data
as the key columns from the table they are based on, but the data is structured and

sorted to make retrieval much faster than the table. Its' operation is transparent to
users of the database. The DBMS uses the index to improve query performance
whenever possible.

Rebuild an index for any table creating a denser unfragmented index and increasing
efficiency.

index_nameThe name of index which need to rebuild

table_nameThe name of table which need to rebuild the index

REBUILD INDEX index_name FOR table_name

Figure 3-94 REBUILD INDEX syntax

 Example

The following example rebuilds the index named NameIndex from the
Employeesinfo table.
dmSQL> REBUILD INDEX NameIndex FOR Employeesinfo;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-219

3.78 REBUILD INDEX IN ANOTHER
TABLESPACE
REBUILD INDEX IN ANOTHER TABLESPACE command rebuilds an index on a
table in another tablespace, and the original index will automatically be deleted. Only
the table owner, a DBA, a SYSDBA or a user with both ALTER and INDEX

privileges for the table may execute the REBUILD INDEX IN ANOTHER
TABLESPACE command.

NOTE Users cann't rebuild indexs for permanent tables in TMPTABLESPACE.

NOTE Indexs on temporary tables only can be rebuilded in TEMTABLESPACE.

NOTE Indexs on system tables only can be rebuilded in SYSTABLESPACE.

index_name Name of the index to be rebuilt

table_name Name of the table which rebuilt index belongs to

tablespace_name Name of the tablespace which rebuilt index belongs to

REBUILD
INDEX index_name table_name tablespace_nameFOR IN

Figure 3-95 REBUILD INDEX IN ANOTHER TABLESPACE syntax

 Example

The following example rebuild the index NameIndex on the table Employeesinfo
stored in the tablespace ts_mode in another tablespace ts_new.
dmSQL> REBUILD INDEX NameIndex FOR Employeesinfo IN ts_new;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-220

3.79 REBUILD TEXT INDEX
The REBUILD TEXT INDEX command rebuilds an IVF or signature text index for
a table. This updates the text index to include new data. Only the table owner, a DBA,
a SYSDBA, a SYSADM, or a user with the INDEX privilege for that table may

execute the REBUILD TEXT INDEX command.

A text index is a mechanism that provides fast access to rows in a table that contains
one or more words or phrases in columns containing text. Text indexes contain a

representation of all the text found in the text columns they are based on, but the data
is encoded and structured to make retrieval much faster than directly from the table.
An index operation is transparent to users. The DBMS uses the index to improve full-

text query performance.

When loading data into a table, DBMaker does not update any text indexes on that
table, thus loading all data before creating a text index. Rows containing matching text

entered into a table after the text index was created will not be returned with the full-
text query results. To include these rows in the search results, rebuild the text index
using the REBUILD TEXT INDEX command.

The incremental option is the default setting for the REBUILD TEXT INDEX
syntax. Incremental appends text entered into a table after the text index was created,
thus making the text available to be returned with full-text query results. The full

option rebuilds an entire text index by dropping and rebuilding the index based on a
new full-text query.

text_index_nameName of the text index to rebuild

table_nameName of the table to rebuild the text index on

incrementalcreates a partial index and appends it to the current index

fulldrops the current index and creates a new index

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-221

REBUILD TEXT INDEX text_index_name FOR

table_name
INCREMENTAL

FULL

Figure 3-96 REBUILD TEXT INDEX syntax

 Example

The following rebuilds the text index named TxtIdx on the Employeesinfo table.
dmSQL> REBUILD TEXT INDEX TxtIdx FOR Employeesinfo;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-222

3.80 REMOVE FROM GROUP
The REMOVE FROM GROUP command removes a user from an existing group.
The user will lose all object privileges that have been granted to the group, but retain
any privileges that have been granted to them directly. Only users with SYSADM,

SYSDBA or DBA security privileges may execute the REMOVE FROM GROUP
command.

Groups simplify the management of object privileges in a database with a large

number of users. Use a group to organize users and/or groups. Any object privileges
granted to the group are automatically granted to all members in the group.

Members added to a group after object privileges have been granted gain those object

privileges in addition to the object privileges that have been granted to them directly.

Specify a group name in place of the user name, as long as the group you are trying to
remove is not a part of the group that you are currently using. User and group names

have a maximum length of 128 characters, and may contain letters, numbers, the
underscore character, and the symbols $ and #. The first character may not be a
number.

user_nameName of the user to remove from the group

group_nameName of the group to remove the user from

REMOVE FROM GROUP group_name
user_name

,

Figure 3-97 REMOVE FROM GROUP syntax

 Example 1

The following removes the user named Vivian from the group SalesStaff.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-223

dmSQL> REMOVE Vivian FROM GROUP SalesStaff;

 Example 2

The following removes the group named NYSalesStaff from the group named

SalesStaff.
dmSQL> REMOVE NYSalesStaff FROM GROUP SalesStaff;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-224

3.81 REMOVE TRACE
The REMOVE TRACE command removes trace from a single table that log the
detaile OLD/NEW data. Only the user with table owner, a DBA, a SYSDBA, or a
SYSADM security privileges can execute the REMOVE TRACE command.

table_nameName of an exisiting single table

REMOVE TRACE ON table_name

Figure 3-98 REMOVE TRACE syntax

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-225

3.82 RESUME SCHEDULE
The RESUME SCHEDULE command resumes a suspended replication schedule for
an asynchronous table. Only the local table owner, a DBA, a SYSDBA, or a SYSADM
may execute the RESUME SCHEDULE command.

remote_database_name…. The name of remote database which need to resume the

RESUME SCHEDULE FOR REPLICATION TO remote_database_name

Figure 3-99 RESUME SCHEDULE syntax

 Example

The following resumes the replication schedule for the remote database named
DivOneDb.
dmSQL> RESUME SCHEDULE FOR REPLICATION TO DivOneDb;

replication schedule

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-226

3.83 REVOKE (Execute Privileges)
The REVOKE command revokes execute privileges on executable database objects
from individual users or groups. Only the object owner, a DBA, a SYSDBA or a
SYSADM may execute the command.

Execute privileges control which executable database objects a user can use. DBMaker
includes the stored command, stored procedure, and project executable objects.

The COMMAND keyword specifies revoking of the EXECUTE privilege on a stored

command. Only users with all security and object privileges necessary to execute the
SQL statement that makes up the stored command in addition to having EXECUTE
privilege on the command may execute a stored command.

The PROCEDURE keyword specifies revoking of the EXECUTE privilege on a
stored procedure. Only the EXECUTE privilege on the stored procedure is required
to execute this command.

The PROJECT keyword specifies revoking of the EXECUTE privilege on a project
containing one or more stored procedures. Revoking EXECUTE privilege on a project
automatically revokes EXECUTE privileges on all procedures in that project.

Only the owner, a DBA, a SYSDBA or a SYSADM automatically have the
EXECUTE privilege. It is possible to revoke EXECUTE privileges from all users
simultaneously by revoking the privilege from PUBLIC. All current users will lose

EXECUTE privileges on the executable database object.

executable_nameName of the executable object to revoke execute privileges on

user_nameName of the user to revoke execute privileges from

group_nameName of the group to revoke execute privileges from

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-227

REVOKE executable_name

FROM

,

user_name

PUBLIC
group_name

COMMAND
PROCEDURE

PROJECT
EXECUTE ON

Figure 3-100 REVOKE (Execute Privileges) syntax

 Example 1

The following revokes EXECUTE privilege on the stored command named
ListUserTables from the user named Vivian.
dmSQL> REVOKE EXECUTE ON COMMAND ListUserTables FROM Vivian;

 Example 2

The following revokes the EXECUTE privilege on the stored procedure named

ShowUsers from the users named Jenny and John, and the group Managers.
dmSQL> REVOKE EXECUTE ON PROCEDURE ShowUsers FROM Jenny, John, Managers;

 Example 3

The following revokes the EXECUTE privilege on all stored procedures in the
InternetFunc from all present and future users using the PUBLIC keyword.
dmSQL> REVOKE EXECUTE ON PROJECT InternetFunc FROM PUBLIC;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-228

3.84 REVOKE (Object Privileges)
The REVOKE command revokes access privileges on database objects from individual
users or groups. Only the object owner, a DBA, a SYSDBA or a SYSADM can execute
the command.

Object privileges control which database objects a user can access and the actions they
can perform. There are seven object privileges SELECT, INSERT, DELETE,
UPDATE, INDEX, ALTER, and REFERENCE. The keywords ALL and ALL

PRIVILEGES can also be used to simultaneously revoke all privileges on an object.

• SELECT privilege- permits selection of data in a database object, applies to the
entire object and cannot be granted on specific columns.

• INSERT privilege- permits insertion of new data into a database object. The
privilege can also be restricted to specific columns.

• DELETE privilege- permits the deletion of data from a database object, applies to

an entire database object, and cannot be granted on specific columns.

• UPDATE privilege- permits updates of data in a database object. The privilege
can also be restricted to specific columns.

• INDEX privilege- permits creation of an index for a database object, which cannot
be granted on specific columns.

• ALTER privilege- permits altering the schema of a database object, applies to the

entire object and cannot be granted on specific columns.

• REFERENCE privilege- permits creation of referential constraints, foreign keys,
on a database object. The privilege can also be restricted to specific columns.

System catalog tables belong to a special virtual user called SYSTEM. All users
including the SYSADM have only SELECT privilege on system catalog tables. Object
privileges on the system catalog tables may not be revoked.

To privileges on specific columns and on the entire database object, use the command
twice, once to revoke privileges on specific columns, and once to revoke privileges on

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-229

the entire table. It is possible to revoke object privileges to all users simultaneously by
revoking the privileges from PUBLIC. All current users will then lose those privileges
on the database object.

column_name Name of the column to revoke object privileges on

table_name Name of the table to revoke object privileges on

user_name Name of the user to revoke object privileges from

group_name Name of the group to revoke object privileges from

REVOKE column_name

,
)(

,

UPDATE

REFERENCE
INSERT

,

DELETE

INDEX
UPDATE

SELECT

REFERENCE
ALTER

INSERT

ALL
PRIVILEGES

ON table_name FROM

,

user_name

PUBLIC
group_name

Figure 3-101 REVOKE (Object Privileges) syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-230

 Example 1

The following revokes the SELECT, INSERT, and UPDATE object privileges on the
Checks table from the user named Vivian.
dmSQL> REVOKE SELECT, INSERT, UPDATE ON Checks FROM Vivian;

 Example 2

The following revokes the INSERT, UPDATE, and REFERENCE object privileges
on the Amount and PayDate columns of the Checks table from the user named

Jenny.
dmSQL> REVOKE INSERT, UPDATE, REFERENCE (Amount, PayDate) ON Checks FROM Jenny;

 Example 3

The following revokes all object privileges on the table Checks from the user named
John.
dmSQL> REVOKE ALL ON Checks FROM John;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-231

3.85 REVOKE (Security Privileges)
The REVOKE command removes a user from a database or changes the security
privileges of a user. Only users with SYSADM or SYSDBA security privileges can
execute the command

The SYSADM can revoke SYSDBA, DBA, RESOURCE, CONNECT and ACCESS
privileges from a user. Revoking the CONNECT privilege effectively removes a user
ID from the database. Once a user ID is removed, that user can no longer connect to

the database. Revoking lower security privileges does not revoke higher ones, with the
exception of the CONNECT security privilege. Revoking the CONNECT security
privilege revokes all higher security privileges.

The SYSDBA privilege has all of the same capabilities as the DBA privilege, but it can
execute the REVOKE command to revoke DBA, RESOURCE, CONNECT and
ACCESS privileges from a user, except SYSADM and SYSDBA privilege. If revoking

SYSDBA privilege from a user, it will retain the DBA privilege.

The DBA privilege has all of the same capabilities as the RESOURCE privilege, but
may additionally create tablespaces and files. Users with DBA privileges can also grant

or revoke object privileges for schema objects owned by other users, except for system
schema objects.

The RESOURCE privilege allows a user to create, alter, and drop all tables, domains,

and indexes. As the owner of any objects they create, users with RESOURCE security
privilege may grant and revoke object privileges to other users and create synonyms
and views for any objects they own.

The CONNECT privilege is necessary before a user can connect to a database. Once a
user is granted a CONNECT privilege, they have been added to the database as a user.
All users must be granted the CONNECT security privilege before they can be

granted any other security privileges. A user with the privilege may create temporary
tables in a database, or perform queries on any data to which they have been granted
permission.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-232

The ACCESS/ALLOW privilege allows a user to connect to database from certain IPs.
This can protect your database and avoid malicious connections. The IP is a standard
Internet Protocol format. It only contains numbers and '*'.

The BLOCK privilege forbids a user to connect to database from certain IPs. This can
protect your database and avoid malicious connections. The IP is a standard Internet
Protocol format. It only contains numbers and '*'.

To revoke all constraints of a user for the specified IP checking rule, use the
"REVOKE ALLOW/BLOCK FROM user_name ALL" statement. ALL indicates all
IP addresses.

If the REVOKE command is used to revoke RESOURCE, DBA or SYSDBA
authority from a user, it will not take effect until the next time the user connects to
the database.

user_nameName of the user to revoke security privileges from

ip_address Address of the user to revoke security privileges from

REVOKE

DBA
RESOURCE

SYSDBA

FROM
,

user_name

CONNECT

ACCESS ,

ip_address

,

r_name
BLOCK
ALLOW FROM

user_name
BLOCK

ALLOW
FROM ALL

su e

Figure 3-102 REVOKE (Security Privileges) syntax

 Example 1

The following revokes the DBA privilege from the users named vivian and jenny.
dmSQL> REVOKE DBA FROM vivian, jenny;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-233

 Example 2

The following revokes the RESOURCE privilege from the users named vivian and
jenny.
dmSQL> REVOKE RESOURCE FROM vivian, jenny;

 Example 3

The following revokes the CONNECT privilege from the users named vivian and
jenny, revoking all privileges and removing the users from the database.
dmSQL> REVOKE CONNECT FROM vivian, jenny;

 Example 4

The following revokes the ACCESS privilege from the user named vivian and jenny

with the addresses 192.55.3.4 and 219.5.3.*.
dmSQL> REVOKE ACCESS FROM Vivian,jenny '192.55.3.4','219.5.3.*';

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-234

3.86 ROLLBACK
The ROLLBACK command rolls back the current transaction to the beginning of the
transaction or to a predefined savepoint. Any user with CONNECT or higher
privileges can execute the command.

Use the ROLLBACK command to roll back all changes made by commands in a
current transaction. Using the ROLLBACK command releases all locks acquired by a
transaction. This command does not function while a database is running in the

AUTOCOMMIT mode.

Also, use the ROLLBACK command to roll back a portion of the changes made by
commands in a current transaction. Commands executed after the savepoint are rolled

back, but no commands before the savepoint are. The transaction remains active and
no locks are released.

savepoint_nameName of the savepoint to roll back to

ROLLBACK
WORK

TO savepoint_name

Figure 3-103 ROLLBACK syntax

 Example 1

The following rolls back the entire active transaction, effectively aborting the
transaction. All locks acquired by the transaction are released.
dmSQL> ROLLBACK WORK;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-235

 Example 2

The following rolls back all commands executed after the savepoint, SavePoint1, but
retains commands executed before the savepoint; the transaction remains active and
locks are not released.
dmSQL> ROLLBACK TO SavePoint1;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-236

3.87 SAVEPOINT
The SAVEPOINT command sets a savepoint in the current transaction and assigns a
name. Only users with CONNECT or higher privileges can execute the
SAVEPOINT command.

The SAVEPOINT command can be used in conjunction with the ROLLBACK
command, to roll back a portion of the commands in a transaction. Specify a
savepoint name in the ROLLBACK command and DBMaker rolls back all commands

that were executed after the savepoint. The transaction remains active and locks
acquired by the transaction are not released.

When specifying a savepoint name that does not exist, DBMaker rolls back the entire

transaction and returns an error. The transaction is aborted and all locks acquired by
the transaction are released. If trying to assign the same savepoint name twice in the
same transaction, the first savepoint is canceled and the name is assigned to the second

savepoint.

savepoint_nameName to assign to the savepoint

SAVEPOINT savepoint_name

Figure 3-104 SAVEPOINT syntax

 Example

The following sets a savepoint named SavePoint1 in the active transaction.
dmSQL> SAVEPOINT SavePoint1;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-237

3.88 SELECT
The SELECT command allows you to find, retrieve, and display data. Only the table
owner, a DBA, a SYSDBA, a SYSADM, or a user with the SELECT privilege for that
table can execute the SELECT command on a table.

The result of the SELECT command is a set of rows known as the result set, which
meets the conditions specified. Specify the tables or views in a database to query; the
condition data must meet to be returned in the result set, and the sequence in which

the data in the result set is output. A SELECT statement can be a UNION of several
single commands.

select SELECT clause lists the columns to retrieve data from

from FROM clause lists the tables the columns are located in

where WHERE clause specifies criteria return values must match

group by GROUP BY clause specifies groups for summary results

having HAVING clause specifies filter conditions for summary results

order by ORDER BY clause specifies the sort order

for browse FOR BROWSE clause specifies only shared locks should be

acquired on the data in the query

into INTO clause specifies the table where the result will be inserted

limit LIMIT clause specifies the number of return records from offset
n for the entire return set

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-238

order by into for browse

UNION ALL

UNION

fromselect

having
group bywhere

Figure 3-105 SELECT (using FROM) syntax

SELECT WITHOUT FROM

The SELECT without the use of the FROM syntax is used to get UDF or expression
results. It does not require the user to use the FROM table clause in the query. Thus,
the user cannot specify a column or table name in the SELECT without the use of the

FROM query.

The following syntax cannot be used in conjunction with the SELECT without the
use of the FROM syntax: WHERE, GROUP BY, HAVING, ORDER BY,

DISTINCT, and UNION.

SELECT WITHOUT FROM expression

Figure 3-106 SELECT without the use of the FROM syntax

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-239

 Example
dmSQL> SELECT ABS(100), COS(100.0);

SELECT Clause

The SELECT clause contains the SELECT keyword and the list of database objects or
expressions to include in the result set. Use the ALL or DISTINCT keywords to
indicate whether duplicate values should be returned. DBMaker returns all rows by

default when either the ALL or DISTINCT keywords are not specified.

The value in the result list may be a column name, an expression, a constant, or an
asterisk (*). An asterisk represents all columns from the source table. Optionally prefix

a source name in front of the column name or asterisk.

Use any of the four basic types of expressions column, constant, function, and
aggregate functions, in the select item list. If including a constant in the select list, the

same value is returned for every row. An aggregate function returns one value for a set
of rows. Aggregate functions are usually used in the GROUP BY clause.

Use the OID associated with each row in a table as a column name by using the name

"OID" in the column list. The OID is essentially a hidden column whose value
uniquely identifies each row in a database. The OID values are not necessarily
sequential.

Use a display label to assign a temporary name to a column in the result set or to
values generated by an expression that do not come from a column. Use the AS
keyword to assign a display label to a column in the result set.

expression Expression that returns a value to include in the result set.

column_name Name of a column to retrieve data values from.

label Name for the result set column that is different from the original

name for the source column.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-240

,

*

expression

column_name AS label

SELECT
DISTINCT

ALL

Figure 3-107 SELECT Clause syntax

FROM Clause

The FROM clause lists table sources and views used to select the data from. This
identifies where the column name comes from if there are ambiguities. The source

may be a table name, a view name a query result, or a synonym name. A source may
be a single source, or an outer source which has the keyword OUTER followed by one
or more single sources.

Supply a correlation name for a table name to refer to the table in other clauses of the
SELECT statement. This may help make the statement more readable. Correlation
names are especially useful with self-joins.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-241

 Example:

The following query selects values from t2 that correspond to the maximum value
from column c1 and groups them by values from c2. Finally, the result set is given the
correlation name t3.
dmSQL> SELECT * FROM (SELECT MAX(c1) FROM t2 GROUP BY c2) AS t3 (c1);

Use the OUTER JOIN keyword OUTER, LEFT OUTER, JOIN, or LEFT JOIN to
form outer joins. There can be more than one OUTER JOIN keyword in a SELECT
statement. All sources before the OUTER keyword must be dominant sources. All of

the sources after the OUTER JOIN keyword must be subservient sources. Specify all
of the outer join table sequences in the FROM clause and specify the outer join factor
in the WHERE clause. The entire join factor in the WHERE clause will be treated as

the Outer Join factors. The other factors will be evaluated before the Outer Join
factors.

DBMaker also support ANSI and ODBC outer join syntax to specify the outer join

factors in the ON clause. The other factors in the WHERE clause will be evaluated
after the outer join factors.

A CROSS JOIN specifies the cross product of two tables and returns the same rows as

if no WHERE clause was specified in an old-style, non-SQL-92-style join. The result
is same as if a user specified ',' in the FROM table_list.

 Example
dmSQL> SELECT * FROM t1 CROSS JOIN t2 CROSS JOIN t3 WHERE t1.c1 = t2.c1 AND t2.c2
= t3.c3;

The result is same as the following query:

 Result
dmSQL> SELECT * FROM t1,t2,t3 WHERE t1.c1 = t2.c1 AND t2.c2 = t3.c3;

In DBMaker 3.5 and later version, manually specify the type of scan to use in a query,
and which index to use in a scan. In addition, the DBMaker query optimizer now

automatically determines the most efficient type of scan to use, even if you have not
recently updated database statistics.

source Name of the table to retrieve data from or query result.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-242

aliasAlternate name for the source used in other clauses

FROM

(

alias
source

,

)

()

ANSI Join

DBMaker Outer Join

ODBC Outer Join

Cross Join

Figure 3-108 FROM Clause syntax

FORCED INDEX SCANS

Force an index scan with the following syntax.
table_name (INDEX [=] index_name [ASC|DESC])

The value of 0 can be used to force a table scan or the value 1 can be used to force a
primary key index scan, may also be used.

Figure 3-109 Force Index Scans syntax

 Example 1

To force a table scan specify the value 0:
dmSQL> SELECT * FROM tb_tmp (INDEX=0);

 Example 2

To force an index scan on a primary key specify the value 1:
dmSQL> SELECT * FROM tb_tmp (INDEX=1);

 Example 3

To force an index scan on the index idx1:
dmSQL> SELECT * FROM tb_tmp (INDEX idx1);

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-243

 Example 4

Allows the query optimizer to decide what type of scan to use on table t1, but forces
an index scan on the idx1 index for table t2:
dmSQL> SELECT * FROM t1, t2 (INDEX idx1);

FORCED INDEX SCAN AND "ALIAS"

General syntax used to force an index scan and provide an alias for the table:
table_name (INDEX [=] index_name) alias_name

INDEX index_nametable_name alias_name
=

Figure 3-110 Force Index Scans and 'Alias' syntax

 Example

To force an index scan on the idx1 index, and provides an alias for the table:
dmSQL> SELECT * FROM t1 (INDEX idx1) a, t1 b WHERE a.c1 = b.c1;

FORCED INDEX SCAN AND "SYNONYM"

General syntax used to force an index scan using a synonym:
synonym_name (INDEX [=] index_name)

synonym_name INDEX
=

index_ name

Figure 3-111 Force Index Scans and 'Synonym' syntax

 Example

To force an index scan on the idx1 index using synonym s1:
dmSQL> SELECT * FROM s1 (INDEX idx1);

FORCED INDEX SCAN AND "VIEW"

General syntax used to force an index scan when creating a view:

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-244

view_name (INDEX [=] index_name)

Figure 3-112 Force Index Scans and 'View' syntax

 Example 1

To force an index scan on the idx1 index when creating view v1:
dmSQL> CREATE VIEW v1 as SELECT * FROM t1 (INDEX idx1);

You cannot force an index when selecting a view.

 Example 2

A wrong usage that will return errors:
dmSQL> SELECT * FROM v1 (INDEX idx1);

FORCED TEXT INDEX SCANS

General syntax used to force a text index scan:
table_name (TEXT INDEX [=] index_name)

=
table_name TEXTINDEX index_name

Figure 3-113 Force Text Index Scans syntax

=
INDEX index_nameview_name

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-245

 Example

To force a text index scan on the tidx1index:
dmSQL> SELECT * FROM t1 (TEXT INDEX tidx1);

SOURCE SUBCLAUSE

The source subclause used in the FROM clause may be either a table name or a result

set from a query. To use the result set from a query, use the syntax provided in Figure
3-115.

Correlation_name Represents the result set of a subquery.
table_name

(select_statement)
AS

(column)

correlation_name
)(

,

Figure 3-114 Source subclause syntax

WHERE Clause

Use the WHERE clause to specify the search condition and join criteria on the data
being selected. If a row satisfies the search conditions, it is returned as part of the
result set. Refer to the sub query topic to see how to use a SELECT statement, sub

query, within a WHERE clause.

Use the percent symbol (%) and the underscore symbol (_) as wildcards in the quoted
strings. The percent symbol matches zero or more characters, and the underscore

symbol matches exactly one character. The ESCAPE clause is optional and permits the
defining of an escape character in order to include the percentage sign and underscore
characters in a quoted string without having them interpreted as wildcards. Use two

consecutive single-quotes to include a single-quote character in a quoted string.

The predicate used in the WHERE clause may be a simple comparison using the
following:

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-246

• Relational Operators — these may be one of the following: >, >=, <=, <, =, and <>.
The relational operator condition is satisfied when the expression on either side of
the relational operator fulfills the relation set up by the operator.

• BETWEEN — this comparison takes the form: x BETWEEN y AND z; the
BETWEEN condition is satisfied when the value or expression to the left of the
BETWEEN keyword lies in the inclusive range, denoted by the AND keyword, of

the two expressions on the right of the keyword.

• IN — this comparison takes the form: x IN (y, z, ...); the IN condition is satisfied
when the value or expression to the left of the IN keyword is included in the list

of values to the right of the keyword.

• IS NULL — this takes the form: x IS NULL; the IS NULL condition is satisfied
when the value or expression to the left of the IS NULL keywords is a NULL

value.

• IS NOT NULL — this takes the form: x IS NOT NULL; the IS NOT NULL
condition is satisfied when the value or expression to the left of the IS NOT
NULL keywords contains a value other than a NULL value.

• LIKE — this takes the form: x LIKE 'y' ESCAPE 'z'; the LIKE condition is
satisfied when the string value or expression to the left of the LIKE keyword

meets the criteria specified in the case-sensitive quoted string to the right of the
keyword.

• MATCH — this takes the form: x NOT CASE MATCH 'y'; the MATCH

condition is satisfied when the quoted string to the right of the MATCH keyword
matches the entire string value or expression to the left of the keyword. The NOT
keyword inverts the search results and CASE keywords keyword makes the search

case-sensitive, both are optional.

• CONTAIN — this takes the form x NOT CASE CONTAIN 'y'; the CONTAIN
condition is satisfied when the quoted string to the right of the CONTAIN

keyword matches any part of the string value or expression to the left of the
keyword. The NOT keyword inverts the search results and the CASE keywords
makes the search case-sensitive, both are optional.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-247

• CONTAINS – the contains operator's condition is satisfied when the
concatenated string from concatenate columns matches the string pattern.

Can use the syntax: [NOT] CONTAINS (column || column [|| column]…,

'string pattern'[, option string])

 Example

The following select statement will select the record from c4 where both c1 and
c4 contain the string 'Mail Server'. The option CASE makes the search case-
sensitive.

dmSQL> SELECT c4 FROM mcol WHERE CONTAINS(c1 || c4, 'Mail Server',

'CASE');

WHERE

AND

OR

predicate

predicate)(NOT

Figure 3-115 WHERE Clause syntax

CAST

CAST allows the output data to be converted to another data type. The chart below
illustrates valid conversions. The table denotes the behavior of data types that are

converted from row X to column Y.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-248

The Numeric, Character, and Date/Time data types include multiple data types.
Numeric data types include; integer (int, serial), smallint, float, double, and decimal.
Character data types include char and varchar. Date/Time data types include; date,

time, timestamp.
Xy int

(serial)
smallint decimal double float (var)

char
(var)

binary
date time timestamp file blob clob

int(serial) Y Y Y Y Y Y N N N N N N N
smallint Y Y Y Y Y Y N N N N N N N
decimal Y Y Y Y Y Y N N N N N N N
double Y Y Y Y Y Y N N N N N N N
float Y Y Y Y Y Y N N N N N N N
(var)char Y Y Y Y Y Y Y Y Y Y N N N
(var)binary N N N N N Y N N N N N N N
date N N N N N Y N Y N Y N N N
time N N N N N Y N N Y N N N N
timestamp N N N N N Y N Y Y Y N N N
file N N N N N Y Y N N N Y N N
blob N N N N N Y Y N N N N Y Y
clob N N N N N Y Y N N N N Y Y

Table 3-1 CAST Conversion Table

 Example 1

Use CAST() in a WHERE predicate.
dmSQL> SELECT * FROM t1 WHERE CAST(c1 AS CHAR(20)) LIKE '2001%';

 Example 2

Use CAST() in an expression.
dmSQL> SELECT CAST(c1+c2 AS CHAR(10)) FROM t1;

 Example 3

Use a nested CAST() statement.
dmSQL> SELECT CAST(CAST(123 AS CHAR(10)) || CAST(45 AS CHAR(10)) AS INT) FROM t1;

CASE

CASE is an SQL 99 function.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-249

CASE

CASE
WHEN condition

expression WHEN condition

THEN

ELSE

expression END

expression

Figure 3-116 CASE Syntax

 Example 1

CASE WHEN p1 THEN v1 ELSE CASE WHEN p2 THEN v2 ELSE… ELSE vn

END…END. This means that if p1 is true then v1 else if p2 is true then v2 else…else
vn. This statement can be performed with the following:
dmSQL> SELECT CASE WHEN c1=3 THEN c2 ELSE CASE WHEN c1=5 THEN c3 ELSE c4 END END
FROM t1;

 Example 2

CASE c1 WHEN d1 THEN v1 ELSE CASE c1 WHEN d2 THEN v2 ELSE…ELSE
vn END…END. This means that if c1=d1 then v1 else if c1=d2 then v2 else…else vn.

This statement can be performed with the following:
dmSQL> SELECT CASE c1 WHEN 3 THEN c2 ELSE CASE c1 WHEN 5 THEN c3 ELSE c4 END END
FROM t1;

 Example 3

CASE WHEN p1 THEN v1 WHEN p2 THEN v2 WHEN…ELSE vn END. This
means that if p1 is true then v1 else if p2 is true then v2 else…else vn. This statement
can be performed with the following:
dmSQL> SELECT CASE WHEN c1=3 THEN c2 WHEN c1=5 THEN c3 ELSE c4 END FROM t1;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-250

COALESCE

COALESCE is an SQL 99 function. COALESCE (v1, v2, v3, …, vn) is equivalent to
"if v1 IS NOT NULL then v1 else if v2 IS NOT NULL then v3 else………….else
vn".

COALESCE expression()

expression,

Figure 3-117 COALESCE Syntax

 Example 1
dmSQL> SELECT COALESCE(c1, 7) FROM t1;

 Example 2
dmSQL> SELECT COALESCE(c1, c2, c3, 7) FROM t1;

NULLIF

NULLIF is an SQL 99 function. NULLIF(v1, v2) is the equivalent to "if v1 = v2 then
NULL else v1".

NULLIF ()expression , expression

Figure 3-118 NULLIF Syntax

 Example 1
dmSQL> SELECT NULLIF(c1, 7) FROM t1;

 Example 2
dmSQL> SELECT NULLIF(t1.c1, t2.c1) FROM t1, t2;

IFNULL

IFNULL is an ODBC function. IFNULL (v1, v2) is the equivalent to coalesce(v1,v2)
and it's equivalent to "if v1 is not null, then v1 else v2".

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-251

IFNULL ()expression , expression

Figure 3-119 IFNULL Syntax

 Example 1
dmSQL> SELECT IFNULL(c1, 7) FROM t1;

 Example 2
dmSQL> SELECT IFNULL(t1.c1, t2.c1) FROM t1, t2;

Compound Comparisons

Combine simple conditions with the logical operators AND, OR, and NOT to form

compound conditions. Use the AND keyword to combine two search conditions
which must be both true. Use the OR keyword to combine two search conditions
when one or the other (or both) must be true. Finally, use the NOT keyword to select

rows where a search condition is false.

 Example 1
dmSQL> SELECT * FROM Customer
 WHERE City NOT IN ('LA', 'NY') AND Age > 40;

 Example 2
dmSQL> SELECT * FROM Orders
 WHERE Price > 10,000 OR Ship_Date = TODAY;

Join Conditions

A join condition is a relational operators comparison on two columns where each

column is from a different table (like: Orders.CusNum = Customer.CusNum).

Join two tables when creating a relationship with a join condition in the WHERE
clause between columns from two tables. The effect of the join is to create a temporary

composite table in which each pair of rows, one from each table, satisfying the join
condition is linked to form a single row. There are four table join types, two-table-
joins, multiple table-joins, self-joins, and outer-joins.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-252

ON <SEARCH_CONDITION>

The ON <search_condition> specifies the condition on which the join is based. The
condition can specify any predicate, although columns and comparison operators are
often used.

 Example
dmSQL> SELECT ProductID, Suppliers.SupplierID

FROM Suppliers JOIN Products
ON (Suppliers.SupplierID = Products.SupplierID);

ANSI OUTER-JOIN

An outer join is a join of two or more tables with outer-join conditions for pairs of
tables. An outer-join condition is a comparison, relational operators, on two columns
from each table. All records of the left most table, will be returned and the result of the

right table will be NULL if the outer-join condition is FALSE.

The following graph shows the ANSI JOIN and optimizer hint syntax:

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-253

FROM
(

,

source
,

alias

,

NATURAL

LOOP

MERGE

JOIN

source JOIN_CONDITION)

INNER

OUTER
LEFT

RIGHT

alias

SEQUENCE

SEQ

Figure 3-120 ANSI Join syntax

ON CONDITION

USING

,

column_name

)(

Figure 3-121 ANSI Join Condition syntax

The SEQUENCE, SEQ, LOOP and MERGE keywords are used as optimizer hints, it

is not ANSI syntax. The optimizer will choose the execution plan if the specified

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-254

keyword could be used in the join execution. If it has no effect, the optimizer will not
return any error message.

When the SEQUENCE/SEQ keywords are specified they force the join sequence like

the table join order in the SQL command. The join table execution sequence will not
be changed by the optimizer. This keyword will have no effect when used with an
outer join.

 Example 1
dmSQL> SELECT * FROM SEQ t1 INNER JOIN t2 ON t1.c1=t2.c1 INNER JOIN t3 ON
t1.c2=t3.c2;

The LOOP/MERGE keywords specify the join execution method of the inner or

outer join. The join execution order of the joined table will not be changed when
specifying the join execution method. When the LOOP keyword is specified, the
optimizer will use a nested join for the inner or outer join. When the MERGE

keyword is specified, the optimizer will use the merge join for the inner and the outer
join with equal join.

 Example 2
dmSQL> SELECT * FROM t1 INNER MERGE JOIN t2 ON t1.c1=t2.c1;

DBMAKER OUTER-JOIN

The following syntax is old DBMaker syntax. The difference with the ANSI outer-

join syntax is the outer join factor is decided by the DBMaker optimizer. The
RIGHT-JOIN is not supported with the following syntax and users cannot mix the
following syntax with the ANSI outer-join syntax.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-255

FROM

alias
source

,

alias
Source

,

Left Join

Outer

 Left Outer
Join

()

Figure 3-122 DBMaker Outer-Join Syntax

ODBC OUTER-JOIN

The ODBC Outer-Join uses the same syntax as the ANSI Outer-Join with the
exception that all of the options must be used.

FROM

,

source
,

alias

{ oj

,

Left Join

Right Join
source

,

alias

ON CONDITION
}

using
,

column_name
()

Figure 3-123 ODBC Outer-Join Syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-256

SELF-JOIN

To join a table to itself, list the table name twice in the FROM clause and assign it
two different aliases. Use the aliases to refer to each of the "two" tables in the WHERE
clause. Suppose in the Employeesinfo table that there is a Manager_ID field, which is

an employee ID for managers.

 Example

To list all of the employee's names together with their manager's name, join the
Employeesinfo table with itself
dmSQL> SELECT e.FName AS Emp, m.Fname AS Manager
 FROM Employeesinfo e, Employeesinfo m
 WHERE e.Manager_Id = m.Emp_Id;

RIGHT-JOIN

Right-Join specifies that all rows from the right table not meeting the join condition
to be included in the result set, and output columns that correspond to the other table
are set to NULL, in addition to all rows returned by the inner-join.

 Example
dmSQL> SELECT * FROM t1 RIGHT JOIN t2 ON t1.c1 = t2.c1;

INNER-JOIN

The usage of INNER JOIN specifies that all matching pairs of rows be returned. It
will discard unmatched rows from both tables. This is the default join type if only the
JOIN keyword is specified in a query.

 Example 1
dmSQL> SELECT * FROM t1 INNER JOIN t2 ON t1.c1 = t2.c1 ;

 Example 2
dmSQL> SELECT * FROM t1 JOIN t2 ON t1.c1 = t2.c1;

 Result
dmSQL> SELECT * FROM t1, t2 WHERE t1.c1 = t2.c1;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-257

NATURAL JOIN

When the NATURAL keyword is specified before the JOIN type, you cannot use the
ON condition or USING column list to specify the join condition or the join column
list. A NATURAL JOIN will perform an equal join on the common column name of

the joined table. The result of the NATURAL JOIN is same as specifying all the
common column names in the USING column list. The projection list for "select *"
will be the joined column followed by the rest of the joined table's columns.

 Example 1
dmSQL> SELECT * FROM t1 NATURAL INNER JOIN t2;

 Example 2
dmSQL> SELECT * FROM t1 NATURAL LEFT JOIN t2;

ON CONDITION

The ON condition specifies the join condition for the joined table.

 Example 1
dmSQL> SELECT * FROM t1 INNER JOIN t2 ON t1.c1 = t2.c1;

 Example 2
dmSQL> SELECT * FROM t1 LEFT JOIN t2 ON t1.c1 = t2.c1;

USING COLUMN LIST

The USING column list is used to specify the joined column list of the joined table.

When USING is specified, every column name specified in the USING column list
should exist and be comparable in the joined table. The result will be the same as
specifying an equal join with the columns in the ON clause. The projection list for

"select *" will be the joined column followed by the rest of the joined table's columns.

 Example 1
dmSQL> SELECT * FROM t1 INNER JOIN t2 USING (c1, c2);

 Example 2
dmSQL> SELECT * FROM t1 LEFT JOIN t2 USING (c1) LEFT JOIN t3 USING (c1);

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-258

TWO TABLE-JOIN

A two-table join combines two tables with join conditions.

 Example1

The following is a two table-join, which combines the Emp_Name with the
Dept_Name using Dept_id.
dmSQL> SELECT FName, Dept_Name FROM Employeesinfo, Department
 WHERE Employeesinfo.Dept_ID = Department.Dept_Id;

 Example2

The following is a two table outer join which selects all records of the Department
table and produce NULL for the project that does not belong to this department
dmSQL> SELECT Dept id, Dept Name, Proj Name FROM Department d outer Project p

WHERE d.Dept_id = e.Dept_Id;

MULTIPLE TABLE-JOIN

A multiple table-join is a join of more than two tables with join conditions for pairs of
tables. A join condition is a comparison, relational operators, on two columns from

each table.

 Example

The following is a three table-join, which selects all the projects engaged by the
employeesinfo in the Engineering department.
dmSQL> SELECT Dept_Name, Proj_Name FROM Department d, Project p, Employeesinfo e
 WHERE d.Dept id = e.Dept Id AND
 p.Emp Id = e.Emp Id AND
 Dept_Name = 'Engineering';

FORCED LOOP JOIN (NESTED JOIN)

General syntax used to force a Nested Join between two tables:
table_name { INNER | OUTER } LOOP JOIN table_name

_ _ _

_ _

_ _
__

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-259

table_name table_name
OUTER

INNER
LOOP
JOIN

Figure 3-124 Force Loop Join Syntax

A forced join of this type must use INNER JOIN or OUTER JOIN syntax.

 Example 1
dmSQL> SELECT * FROM t1 INNER LOOP JOIN t2 ON t1.c1=t2.c1;

 Example 2
dmSQL> SELECT * FROM t1 OUTER LOOP JOIN t2 ON t1.c1=t2.c1;

FORCED MERGE JOIN

General syntax used to force a Merge Join between two tables:
table_name { INNER | OUTER } MERGE JOIN table_name

table_name table_name
OUTER

INNER
MERGE
JOIN

 Figure 3-125 Force Merge Join Syntax

When join cannot use Merge Join then a Force Merge Join is useless, however, an
error message is not returned.

 Example 1
dmSQL> SELECT * FROM t1 INNER MERGE JOIN t2 ON t1.c1=t2.c1;

 Example 2
dmSQL> SELECT * FROM t1 OUTER MERGE JOIN t2 ON t1.c1=t2.c1;

FORCED JOIN SEQUENCE

Force all tables join sequence, and then the join sequence cannot swap. General syntax

used to force Join Sequence:
SELECT FROM [SEQUENCE | SEQ] table_name_list

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-260

select from table_name_list
SEQ

SEQUENCE

 Figure 3-126 Force Join Sequence Syntax

 Example 1
dmSQL> SELECT * FROM SEQUENCE t1, t2, t3 WHERE t1.c1=t2.c1 AND t2.c2=t3.c2;

 Example 2
dmSQL> SELECT * FROM SEQ t1 INNER JOIN t2 ON t1.c1=t2.c1 INNER JOIN t3 ON
t1.c2=t3.c2;

GROUP BY Clause

Use the GROUP BY clause to produce summary data within a group. A group is a set
of rows that have the same values of group by columns. A single row of aggregate
results is produced for each group. The column to group results by is identified by

column name or display label.

Using the GROUP BY clause restricts can be entered in the SELECT clause. A select
item in a group by query must be one of the following:

• An aggregate function used to produce a single value to summarize the rows
contained in a group

• A grouping column, which is listed in the GROUP BY clause

• A constant

• An expression involving an above combination

In practice, a GROUP BY query always includes both a grouping column and an

aggregate function. Each row that contains a null value in a column, specified by the
GROUP BY clause, belongs to a single group; all null values are grouped into one
group.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-261

The USING HASH/SORT clause is used as optimizer hint syntax. When the USING
HASH is specified, the optimizer will choose the hash method for GROUP BY
execution. The optimizer will not choose the hash method when there are too many

groups for GROUP BY when specifying USING HASH. When USING SORT is
specified, the optimizer will try to use an index scan if there are any indexes with the
same column as the GROUP BY clause or it will choose the execution plan to sort by

the GROUP BY column when executing GROUP BY.

GROUP BY

,

HAVING

USING
HASH

SORT

,

column_ name

predicate

predicate

AND

OR

()NOT

Figure 3-127 GROUP BY Clause syntax

 Example 1

The following uses SELECT to retrieve Dept_Id and AVG(salary) for each employee
and then adds the employees AVG(salary) to ID 1 to get an average salary for the

entire group.
dmSQL> SELECT Dept Id, AVG(Salary) FROM Employeesinfo
 GROUP BY Dept_Id;
dmSQL> SELECT Dept Id AS ID1, AVG(Salary) FROM Employeesinfo
 GROUP BY ID1;

_

_

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-262

 Example 2

The following uses SELECT to retrieve Dept_Id and AVG(salary) for each
department in the Employeesinfo table by HASH method.
dmSQL> SELECT Dept Id, AVG(Salary) FROM Employeesinfo
 GROUP BY Dept_Id USING HASH;

FORCED GROUP BY METHOD

General syntax used to force a Join Sequence:
GROUP BY column_name_list [USING SORT | USING HASH] having

GROUP BY HAVING
USING HASH

USING SORT
columne_name_list

 Figure 3-128 Force Group by Method Syntax

 Example 1
dmSQL> SELECT c1,c2,COUNT(*) FROM tb_test GROUP BY c1,c2 USING HASH;

 Example 2
dmSQL> SELECT c1,c2,COUNT(*) FROM tb test GROUP BY c1,c2 USING SORT HAVING
SUM(c3)>0;

HAVING Clause

The HAVING clause is used to select or reject a group. A sub-query can appear in the

having clause. Refer to the SUBQUERY section for more information.

 Example

The following example shows the average sales amount for departments with total
sales exceeding one million dollars.
dmSQL> SELECT Dept_Name, AVG(Amount) FROM Sales
 GROUP BY Dept Name
 HAVING SUM(Amount) > 1000000;

_

_

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-263

ORDER BY Clause

The result rows of a query are not arranged in any particular order. Use the ORDER

BY clause to sort query results by the values contained in one or more columns.

The ASC/DESC keywords specify the sort order of the results as ascending, smallest
value first, or descending order. The default order is ascending. NULL values are

treated as larger that non-null values for sorting purposes. Using the ASC keyword to
specify sort order, NULL values would come after any non-null values.

column_name Name of the column or display label in the SELECT list to sort

 the query results by

column_number Integer that represents the placement of a column or expression

 in the SELECT list

expression To sort the result query by a specified expression

ORDER BY

,

ASC
DESC

column_name
column_number

expression

Figure 3-129 ORDER BY Clause syntax

 Example 1

The following sorts the results by name in ascending order by default, and age in
descending order.
dmSQL> SELECT Name, Address, Age FROM Customer
 ORDER BY Name, Age DESC;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-264

 Example 2

The following uses a column number and display label in the ORDER BY clause.
dmSQL> SELECT Dept Id, Salary + Bounce AS Total Com, FName
 FROM Employeesinfo
 ORDER BY 1, Total_Com;

UNION OPERATOR

Use the UNION operator to combine the results of two or more queries into one

result. Duplicate rows are removed from the combined results when using the
UNION operator and the combined results have distinct values for each row. If
certain that no duplicate rows exist in individual results, or to keep duplicate rows, use

the UNION ALL keywords. UNION ALL keeps the rows from individual result sets
and is faster than the UNION operator.

There are restrictions on results that can be combined by a UNION operator:

• The two results need to contain the same number of columns.

• The corresponding items in each result must have compatible data types, not the
same column names. The column name of the first result becomes the column

name of the combined result.

• Use an ORDER BY clause following the last SELECT clause and refer to the
ordered column by its position in the SELECT list column number.

 Example 1

The following shows the use of the UNION clause in a SELECT statement.
dmSQL> SELECT C1, C2 FROM T1
 UNION

SELECT C3, C4 FROM T2
 ORDER BY 2;

 Example 2

The following example shows the use of the UNION ALL clause in a SELECT

statement.
dmSQL> SELECT 'MOVIE', Event FROM Entertainment WHERE Type = 'MOVIE'
 UNION ALL

_ _

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-265

SELECT 'BOOK', Name FROM MyBook;

SUB-QUERIES

A sub-query is a query that appears within the WHERE or HAVING clause of
another SQL statement. A sub query is always enclosed in parentheses, but otherwise

it has the same form of a SELECT statement.

A sub-query must produce a single column of data as its query result. In addition,
when the query result is used in a simple relational operator comparison, the sub query

must only create a single row value.

 Example

The following is a sub query selects employees whose salary is greater than the average.
dmSQL> SELECT Name FROM Employeesinfo
 WHERE Salary > (SELECT AVG(Salary) FROM Employeesinfo);

IN SUB-QUERY

The IN sub-query is a membership test. It is true if the value of the expression

matches one or more of the values selected by the sub query. In the IN, membership
test the sub query may return more than one row of one column data.

 Example

The following selects all the employees whose department is located in NY.
dmSQL> SELECT FName FROM Employeesinfo
 WHERE Dept Id
 IN (SELECT Dept_Id FROM Department WHERE City = 'NY');

EXISTS SUB-QUERY

The existence test checks whether a sub query produces any rows. In a sub-query,
sometimes it is necessary to refer to the value of a column in the "current" row of the
main query. This is called an outer reference. The d.Dept_id column in the example is

an outer-reference. There can be multiple levels of sub-queries, and the outer reference
can refer to the columns of tables in any outer-level sub-query.

_

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-266

 Example

The following lists all departments with at least one EMPLOYEE in that Department
whose salary exceeds $500,000.
dmSQL> SELECT Dept Name FROM Department d
 WHERE EXISTS
 (SELECT Dept Id FROM EMPLOYEESINFO e
 WHERE e.Salary > 500000 AND d.Dept_Id = e.Dept_Id);

ANY/ALL/SOME SUB-QUERY

Use the ALL keyword in a sub query. The search condition is true if the comparison is
true for every value returned. If the sub query returns no value, an empty set, the
condition is true. If there is a NULL in the returning set, the condition is false.

Use the ANY keyword in a sub query. The search condition is true if the comparison
is true for at least one of the value returned. If the sub query returns no value, the
condition is false.

 Example

The following example selects non-manager employees with a Salary greater than at

least one Manager.
dmSQL> SELECT FName FROM Employeesinfo
 WHERE Manager = 'N' AND Salary > ANY
 (SELECT Salary FROM EMPLOYEESINFO WHERE Manager = 'Y');

FOR BROWSE Clause

The FOR BROWSE keywords designate the browse mode to be used in the selection.
In browse mode, no locks are acquired so other users do not block the selection. Since

no locks are acquired, the read is not guaranteed to be repeatable. Browse mode is
useful for browsing data or producing reports.

_

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-267

FOR BROWSE

column

SELECT syntax FOR READ ONLY

FOR UPDATE

,
OF

Figure 3-130 FOR BROWSE Clause syntax

LIMIT

LIMIT specifies the number of returned records from offset n for the entire return set.

offset Offset from the first returned records in the result set

rows The number of returned rows

LIMIT

offset

rows

offsetrows OFFSET

Figure 3-131 LIMIT syntax

 Example
dmSQL> SELECT * FROM tb_test ORDER BY c1 LIMIT 10;

Aggregate Functions

Aggregate functions compute a single result from a set of input values. DBMaker
supports the following built-in aggregate functions:

• MIN

• MAX

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-268

• AVG

• COUNT

• SUM

• XMLAGG

The MIN function returns the minimum value of all input values.

The MAX function returns the maximum value of all input values.

The AVG function returns the average (arithmetic mean) of all input values.

The COUNT function returns the number of records which meet the set standards.

The SUM function returns the sum of all input values.

The XMLAGG function returns the concatenation of XML values.

The syntax is as follows:
{AVG|MAX|MIN|SUM|XMLAGG} ([ALL|DISTINCT] expression
[,comparsion predicate])
|COUNT (* [,comparsion_predicate])
|COUNT ([ALL|DISTINCT] expression [,comparsion_predicate])

Comparison_ predicate…….expression with comparison_operator.

Figure 3-132 AGGREGATE FUNCTION syntax

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-269

 Example
dmSQL> SELECT COUNT(*) FROM tb_test;

An aggregate function can only be used as an aexpression in the result list, HAVING
clause, GROUP BY clause and ORDER BY clause of a SELECT command. It is
forbidden in other clauses, such as WHERE clause.

WINDOW Functions

A window function performs a calculation across a set of table rows that are somehow

related to the current row. This is comparable to the type of calculation that can be
done with an aggregate function. But unlike regular aggregate functions, use of a
window function does not cause rows to become grouped into a single output row.

The syntax is as follows:
func_name() OVER ([PARTITION_BY_CLAUSE] ORDER_BY_CLAUSE)

PARTITION_BY_CLAUSE……. specify the columns used to divide the result set
into partitions. The window function is applied to each partition separately and

computation restarts for each partition.

ORDER_BY_CLAUSE…….. specify the columns used to specify the order to apply
the window function.

func_name
partition_by_clause

OVER)crder_by_clause(

 Figure 3-133 WINDOW FUNCTION syntax

DBMaker supports the following window functions:

• ROW_NUMBER

• RANK

• DENSE_RANK

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-270

The row_number function returns the sequential number of a row within a partition
of a result set, starting at 1 for the first row in each partition.The returned type is
BIGINT.

The rank function returns the rank of a value in a group of values. It is very similar to
the dense_rank function. However, the rank function can cause non-consecutive
rankings if the tested values are the same. Whereas, the dense_rank function always

result in consecutive rankings.The two functions returned type is BIGINT.

 Example

The following example shows ROW NUMBER,RANK and DENSE_RANK of the
sale quantity for the book category.
dmSQL> SELECT TITLE, BOOK_CATEGORY, SALE_QTY,

ROW NUMBER() OVER (PARTITION BY BOOK CATEGORY ORDER BY SALE QTY) AS
ROW NUMBER,
RANK() OVER (PARTITION BY BOOK_CATEGORY ORDER BY SALE_QTY) AS RANK,
DENSE RANK() OVER (PARTITION BY BOOK CATEGORY ORDER BY SALE_QTY) AS
DENSE RANK
FROM BOOK_STORE;

The result as following:
TITLE CATEGORY SALE QTY ROW NUMBER RANK DENSE RANK
======== ======== ======== ================ ================ ================
book3 business 20 1 1 1
book2 business 30 2 2 2
book1 business 40 3 3 3
book1 computer 10 1 1 1
book2 computer 20 2 2 2
book3 computer 20 3 2 2
book4 computer 30 4 4 3

There are some restrictions on using the three WINDOW functions:

• ORDER BY CLAUSE cannot use order by constant.

 Example
dmSQL> SELECT row_number() OVER (ORDER BY 1) FROM t1;

• OVER clause must be the same for all window function used in the query.

_
_

_ _

__
_

_ _ _

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-271

 Example
dmSQL> SELECT row_number() OVER (ORDER BY c1), row_number() OVER (ORDER
BY c2) FROM t1;

• GROUP BY or aggregate function is not supported with window function.

 Example
dmSQL> SELECT max(c1), row_number() OVER (GROUP BY c1) FROM t1;

• Window function are not supported in the INSERT, DELETE or UPDATE.

• Window function are not supported in the WHERE clause or subquery.

XML Functions

The xml function is a set of functions which produce xml content from SQL data.

DBMaker support XML functions, which are parts of the SQL statement. Users can
use these functions via dmsql, odbc or jdbc interface.

DBMaker supports the following XML functions:

• xmlelement

• xmlforest

• xmlagg(xml)

• xmlcomment(text)

The syntax for xmlelement is as follows:
xmlelement(name name [, xmlattributes(value AS attname [, ...])] [,
content, ...])

The xmlelement expression produces an xml element with the given name, attributes

and content.

name xml element tag name. If the name contains invalid name
character, it will use hex format to replace it. For example, if name is 'phone

number'(there is a space between phone and number), the tag name would be replaced
as phone_x20_number.

attname attribute names.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-272

contentcan be plain text, sub xml element, or xml comment.

 Example 1
dmSQL> SELECT XMLELEMENT(name foo, XMLATTRIBUTES(current date as bar), 'cont',
'ent');

XMLELEMENT(NAME FOO, XMLATTRIBUTES(CURRENT DATE AS BAR), 'CONT', 'ENT')
==
<foo bar="2011-08-18">content</foo>

1 rows selected

The syntax for xmlforest is as follows:
xmlforest(content [AS name] [, ...])

The xmlforest expression produces an XML forest (sequence) of elements using the
given name and content. If name is not specified and the content value is a column

reference, then the default would be the column name.

 Example 2
dmSQL> SELECT XMLFOREST(empname, phone) FROM employee;

XMLFOREST(EMPNAME, PHONE)
===
<empname>Abby</empname><phone>123-1234</phone>
<empname>Alice</empname><phone>234-1234</phone>
<empname>Amber</empname><phone>567-1234</phone>
3 rows selected

The syntax for xmlagg(xml) is as follows:
xmlagg(xml)

Unlike the other functions, xmlagg is an aggregate function. It concatenates the input
values across rows. The input of xmlagg should be an xml fragment. The output is

CLOB type.If there is no content, then the xml element would be displayed as an
empty element like <ABC/>. No extra new line added after the start or end tag.

 Example 3
dmSQL> SELECT XMLAGG(XMLELEMENT(name person, XMLELEMENT(name name, empname)))
FROM employee;

_

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-273

XMLAGG(XMLELEMENT(NAME PERSON, XMLELEMENT(NAME NAME, EMPNAME)))
===
<person><name>Abby</name></person><person><name>Alice</name></person><person><nam
e>Amber</name></person>

1 rows selected

The syntax for xmlcomment(text) is as follows:
xmlcomment(text)
Xmlcomment is an udf. The input is sql expression which can produce nchar or char
data. The output is a string in XML comment format which starts with <!-- and ends
with -->.

text If the text contains any escape characters (eg, < > &), those
characters will be replaced with entity display.

 Example 4
dmSQL> SELECT XMLCOMMENT(empname) FROM employee;

XMLCOMMENT(EMPNAME)
===
<!--Abby-->
<!--Alice-->
<!--Amber-->

3 rows selected

There are restrictions on using the four XML functions:

• Always automatically cast input as char. Because udf's input type is predefined.

• Output is char type, except xmlagg. The size is limited (related to page size). For
example, if DB_PgSiz = 8, then the output string size is limited as 8056. Oversize
data will be truncated without warning.

• If input is nchar with characters which cannot be converted to lcode, the output
might be something invalid. For example, the original data is stored in nchar
column and the data contain both traditional Chinese character and Japanese

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-274

character. If lcode = 2, then those traditional Chinese character cannot be
converted properly.

• No new line will be added after end tag. No special xml format is provided.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-275

3.89 SET CONNECTION OPTIONS
The SET CONNECTION OPTIONS command provides syntax so users can set
connection options through SQL statements. Useful for users that use front-end tools
like Delphi to connect to the database and cannot get ODBC connection handles,

they can set connection options needed directly instead.

The following is the detailed description of all of the options used with this command.
The options fall into six categories: no value options, on/off options, number options,
string options, symbol options, and transaction options.

no_value_options Option which has no option value

on_off_options…………Option with a value of on or off

string_options…………Option whose value a single quoted string, such as 'FOB'

number_options………Option whose value is an integer

symbol_options…………Option whose value is one of a set of symbols, such as {delete |
close | preserve}

transaction_options……Option specifying transaction's actions

SET

no_value_options

symbol_options
string_ options

on_off_options
number_options

transaction_options

Figure 3-134 SET CONNECTION OPTIONS syntax

No Value Options

Options in this category have no option values and are simple commands.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-276

SET FLUSH

The SET FLUSH is a replication server option that flushes replication to the slave
site(s).

SET SYSINFO CLEAR

Clear system information resets system table, SYSINFO.

SYSINFO CLEAR

FLUSH

Figure 3-135 No Value Options syntax

ON/OFF Options

In this category, all valid option values are ON or OFF. Some only allow the value of

ON or OFF; others accept both.

SET AUTOCOMMIT ON/OFF

Turn autocommit ON or OFF.

SET BACKUP OFF

Set backup mode to non-backup. The setting is the same as setting the DB_BMode to
0.

SET BKSVR CMP ON/OFF

Set backup server's compact backup option ON or OFF.

SET BLOB BACKUP ON

Set backup mode to backup-data-and-blob. This setting is the same as setting
DB_BMode to 2.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-277

SET BROWSE ON/OFF

Set connection option SQL_ATTR_TXN_ISOLATION to
SQL_TXN_READ_UNCOMMITTED (ON) or SQL_TXN_SERIALIZABLE
(OFF). For more information, please refer to the ODBC Programming Guide in the

function SQLGetInfo with the option SQL_DEFAULT_TXN_ISOLATION.

SET DATA BACKUP ON

Set backup mode to backup-data. This setting is the same as setting the DB_BMode

to 1.

SET FASTCOPY ON/OFF

This option is used to set the connection attribute on client side. The default setting is

OFF. Each user connecting to the database has a key attribute, and a user's setting will
not affect other users.

SET FREE CATALOG CACHE ON/OFF

Set the system catalog cache ON to free it or OFF to save.

SET ITCMD ON/OFF

Turn implicit data conversion ON or OFF.

SET JOURNAL ON/OFF

Only a DBA may turn Journal writing ON or OFF.

SET LOADAUTOINDEX ON/OFF

This option is used to specify wheter load all indexes while user implemented LOAD
DB command. Users implement LOAD DB command load all index if setting
LOADAUTOINDEX ON, but if set LOADAUTOINDEX OFF, user implement

LOAD DB command load all index except auto index. The default setting is OFF.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-278

SET LOAD SYSTEM DEFAULT ON/OFF

If users assign value to the column by using the INSERT/UPDATE statement, this
option is used to specify whether the value of a column with SYSTEM DEFAULT
attribute will be overridden in the process of loading the tables of database. If the user

sets this option to ON, the value will be updated to the default value; if the user sets
this option to OFF, the original value will be updated to the value specified by the
users. The default setting for this option is OFF.

SET REMOVE SPACE PADDING ON/OFF

Turn ON/OFF the facility that removes the space padding after a string data
automatically.

SET STRING CONCAT ON/OFF

This option is used for the string concatenate operator (||). If you set this option to
ON, all space padding in CHAR type data will be removed before the operator is

applied. If this option is OFF, all space padding will be kept.

SET SYSTEM DEFAULT ON/OFF

Data to be updated, this option is used to specify whether the value of a column with

SYSTEM DEFAULT attribute will be overridden to the default value. If the user sets
this option to ON, the value will be updated to the default value; if the user sets this
option to OFF, the original value will be updated to the value specified by the users.

The default setting for this option is ON.

SET SYSTEM INIT ON/OFF

Only a DBA may turn system mode ON or OFF. In the system mode, create system

tables.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-279

ON / OFF OPTIONS

Data
Backup OFF

BLOB
Backup ON

ON

Autocommit
BKSVR CMP

Browse

Free Catalog Cache

Journal

Remove Space Padding

System Init

String Concat

OFF

FASTCOPY

System Default

Load System Default

ITCMD

Figure 3-136 ON/OFF Options syntax

Number Options

This group contains options with values as integers. Each option may have its own
range of valid integers.

SET BKSVR JOURNAL FULL NUMBER

Set the backup server's Journal full percent rate, from 0 to 100.

SET BKSVR PID NUMBER

Set the backup server process ID to a number. Currently the number must be 0.

SET DDB LOGIN TIMEOUT NUMBER

Set the login timeout for a DDB connection.

SET DDB LOCK TIMEOUT NUMBER

This option sets the lock timeout for a DDB connection.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-280

SET INPUT PARAM N AS CFILE | ASCII

This set option is used before an INSERT or UPDATE statement that uses
parameters. It is used if the user wants to bind one or more of the parameters in the
statement to a client file. The input data for the corresponding parameter or

parameters in the succeeding statement will be bound to a client file. The data to
insert must be character type data, and the parameter must correspond to either a
LONG VARCHAR or LONG VARBINARY type column.

Use the ALL option to bind all parameters to a client file. The CFILE option must be
used to set the parameters to bind to the client file. To reset DBMaker so that it does
not bind parameters to a client file, use the SET INPUT PARAM statement with the

ASCII option.

numberSpecifies, in sequence, which parameter is bound to the client file

CFILE

ASCII

AS

number

ALL

SET INPUT PARAM

Figure 137 Syntax of the SET INPUT PARAM option

 Example

In this example, the file 'dmconfig.ini' can be inserted into column c3 using a host
variable.
dmSQL> CREATE TABLE tb_attri (c1 INT, c2 INT, c3 LONG VARBINARY);
dmSQL> SET INPUT PARAM 3 AS CFILE;
dmSQL> INSERT INTO tb attri VALUES (?,?,?);
dmSQL/Val> 2,2,'dmconfig.ini';
dmSQL/Val> end;

SET LOCK TIMEOUT NUMBER

Set the number of seconds to wait for the lock before returning to the application. If
the number is positive, the timeout is in seconds. If the number is zero, it does not
wait. If the number is negative, it will always wait.

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-281

SET MAXTBROW NUMBER

Set the maximum number of rows to be returned when retrieving table data. All rows
are returned when the number is zero or negative.

SET RPSVR RETRY NUMBER

The number of retries after a network failure occurs when replicating.

.
BKSVR PID

MAXTBROW

NUMBER OPTIONS

RPSVR Retry

BKSVR Journal Full

DDB Login Timeout

Lock Timeout

DDB Lock Timeout integer

String Length

Figure 3-138 Number Options syntax

String Options

Options in this group use single-quoted strings as the value. For some options, the

values must fit in the special formats.

SET BKSVR PATH STRING

Set the backup Journal file path.

SET DATE INPUT FORMAT {ALL | STRING}

Set input format for DATE columns.

The valid formats are:

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-282

FORMAT EXAMPLE
'mm/dd/yy' '02/18/99'

'mm-dd-yy' '02-18-99'

'dd-mon-yy' '18-Feb-99'

'mm/dd/yyyy' '02/18/1999'

'dd/mon/yyyy' '18/Feb/1999'

'dd-mon-yyyy' '18-Feb-1999'

'dd.mm.yyyy' '18.2.1999'

 Table 3-2 (yy/yyyy: year, mm: month, dd: day)

When the ALL command is specified, all of the above date formats are allowed.

SET DATE OUTPUT FORMAT STRING

Set the output format for DATE columns. The formats are listed in the SET DATE
INPUT FORMAT command.

SET EXTNAME TO STRING

Set extension name of the server file objects to string.

SET TIME INPUT FORMAT { ALL | STRING }

Set the input formats for the TIME columns. Setting the input format to ALL allows

all formats.

Alternately, use one of the following formats for input and output formats:

FORMAT EXAMPLE
'hh:mm:ss.fff ' 22:10:20.30

'hh:mm:ss' 22:10:20

'hh:mm' 22:10

'hh' 22

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-283

'hh:mm:ss.fff tt' 10:10:20.30 PM

'hh:mm:ss tt' 10:10:20 PM

'hh:mm tt' 10:10 PM

'hh tt' 10 PM

'tt hh:mm:ss.fff ' PM 10:10:20.30

'tt hh:mm:ss' PM 10:10:20

'tt hh:mm' PM 10:10

'tt hh' PM 10

Table 3-3 (hh: hour, mm: minute, ss: second, fff: fraction, tt: AM/PM)

When the ALL command is applied, all of the above formats can be used to input

TIME columns.

SET TIME OUTPUT FORMAT STRING

Set output format for the TIME columns. The possible formats in the string are the

same options as "SET TIME INPUT FORMAT" (See Table 3-3).

.
Data Output Format

ExtName

STRING OPTIONS

Data Input Format All

Time Input Format String

Time Output Format

BKSVR Path

String

.

Figure 3-139 String Options syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-284

Symbol Options

In this group, all option values are a set of symbols that mainly match ODBC

symbols. Please refer to the corresponding ODBC connection options for more
information.

SET CB MODE { CLOSE | DELETE | PRESERVE }

Set cursor behavior, as transactions are committed. For more information about these
three modes, please refer to the ODBC Programmer's Guide in the SQLGetInfo
function section with the SQL_CURSOR_COMMIT_BEHAVIOR option.

SET CONCAT NULL RETURN { NULL | STRING }

This option is used for string concatenation with null for the CONCAT built-in
function or concatenate operator (||). The default setting for this option is NULL. If

this option is set to NULL, then any string concatenated with a null value will return
null. If the option is set to STRING, then any string concatenated with a null value
will return the string, because the null value will be treated as an empty string.

SET DISCONNECT { DISCONNECT | TERMINAT | WAIT }

Sets the action of SQLDisconnect(). If disconnect is set, it just disconnects from the
server. The terminate call will shutdown the database. The wait call option will cause

the call to wait for the server to completely shutdown before it returns. This is an
internal option of DBMaker for developing tools to shutdown the database by calling
the SQLDisconnect().

SET DFO DUPMODE { COPY | NULL }

This option determines file objects duplication when executing the "select into" on the
file object columns from the remote tables. If set to null, the FILE columns will be set

to NULL. Otherwise, the remote file objects will be copied into local tables.

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-285

SET FO TYPE { BLOB | FILE }

Selects the SQL types to map to a FILE column. If a file is selected, SQL_FILE will be
returned for FILE columns. Otherwise, the SQL_LONGVARBINARY will be used.

SYMBOL OPTIONS

FO Type
File

BLOB

CB Mode Delete
Preserve

Close

DFO Dupmode

Disconnect Terminate
 Wait

Disconnect

Null

Copy

Figure 3-140 Symbol Options

 Example 1

SET BKSVR PID
dmSQL> SET BKSVR PID 0;

 Example 2

SET BKSVR PATH
dmSQL> SET BKSVR PATH 'd:\data\backup';

 Example 3

SET DATE INPUT FORMAT
dmSQL> SET DATE INPUT FORMAT ALL;
dmSQL> SET DATE INPUT FORMAT 'yyyy/mm/dd';

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-286

 Example 4

SET DATE OUTPUT FORMAT
dmSQL> SET DATE OUTPUT FORMAT 'mm-dd-yy'; // result of DATE column will be like
12-31-99

 Example 5

SET DDB LOCK TIMEOUT:
dmSQL> SET DDB LOCK TIMEOUT 20; // timeout is 20

 Example 6

SET DDB LOGIN TIMEOUT
dmSQL> SET DDB LOGIN TIMEOUT 15;

The remaining examples use two tables named t1 on database db1 and db2. The
definitions of both tables named t1 are included.

 Example 7

SET DFO DUPMODE
dmSQL> CREATE TABLE t1 (c1 INT, c2 FILE);

Now, we use db2 as a remote database of db1.

 Example 8

SET DFO DUPMODE
dmSQL> SET DFO DUPMODE null;

Insert data into t1.

 Example 9

SET DFO DUPMODE
dmSQL> SELECT c1, c2 from DB2:SYSADM.t1 INTO t1;

Then column c2 of t1 will be NULL. On the other hand, if we use.

 Example 10

SET DFO DUPMODE
dmSQL> SET DFO DUPMODE copy;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-287

Insert data into t1 by selecting tuples from db2:t1, column c2 of newly inserted rows
are copied from column c2 of db2:t1.

 Example 11

SET EXTNAME TO
dmSQL> SET EXTNAME TO 'FOB';

 Example 12

SET LOCK TIMEOUT
dmSQL> SET LOCK TIMEOUT 30 ; // timeout is 30 seconds
dmSQL> SET LOCK TIMEOUT 0; // always wait
dmSQL> SET LOCK TIMEOUT –5; // always wait

 Example 13

SET MAXTBROW
dmSQL> SET MAXTBROW 10; // return only first 10 tuples of data
dmSQL> SET MAXTBROW –3; // return all tuples

 Example 14

SET SYSTEM INIT
dmSQL> SET SYSTEM INIT ON;
dmSQL> CREATE TABLE SYSTEM.t1 (c1 int);

 Example 15

SET TIME INPUT FORMAT
dmSQL> SET TIME INPUT FORMAT ALL; // all formats accepted
dmSQL> SET TIME INPUT FORMAT 'hh:mm'; // 10:20

 Example 16

SET TIME OUTPUT FORMAT
dmSQL> SET TIME OUTPUT FORMAT 'hh:mm:ss'; // 10:20:55

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-288

Transaction Options

Set connection option SQL_ATTR_TXN_ISOLATION to

SQL_TXN_READ_UNCOMMITTED, SQL_TXN_READ_COMMITTED,
SQL_TXN_REPEATABLE_READ or SQL_TXN_SERIALIZABLE. For more
information, please refer to the ODBC Programming Guide in the function

SQLGetInfo with the option SQL_DEFAULT_TXN_ISOLATION.

TRANSACTION OPTION

SET TRANSACTION ISOLATION LEVEL

READ UNCOMMITED

READ COMMITED

REPEATABLE READ

SERIALIZABLE

Figure 3-141 TRANSACTION OPTIONS syntax

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-289

3.90 SET CLIENT_CHAR_SET
The SET CLIENT_CHAR_SET command specifies the character set on the database
client side.

In mutilingual database, client side can use several local codes to connect to UTF-8

database. So client side can set its own character set to distinguish with the server side.
Key word DB_LCode is used to set the server's language code, while uses
DB_CliLCODE to set the client's character set in the dmconfig.ini file. In addition,

user can aslo set client's character set throung the command
SET_CLIENT_CHAR_SET But, this command is only valid for the current session,
once disconnect this session, the setting set by this command can be useless.

Aslo, user may need to know what the character set in the database server or in the
client side. And the UDF GETSYSINFO() can help to return the settings.

To get server character set, the syntax is SELECT GETSYSINFO('LCODE');

To get the client character set, the command is SELECT
GETSYSINFO('CLILCODE');

client-character-set-string Character sets can be set in client side

ASCII (English)
BIG5 (Traditional Chinese)
Shift-JIS (Japanese Shift-JIS + Half Corner)

GBK (Simplified Chinese)
ISO-8859-1 (Latin1 code)
ISO-8859-2 (Latin2 code)

ISO-8859-5 (Cyrillic code)
ISO-8859-7 (Greek code)
EUC-JP (Japanese code)

GB18030 (Simplified Chinese)
Unicode(UTF-8)

ISO-8859-{3,4,9,10,13,14,15,16},KOI8-R, KOI8-U, KOI8-

RU,CP{1250,1251,1252,1253,1254,1257}, CP{850,866},Mac{Roman,

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-290

Central Europe, Iceland, Croatian, Romania }, Mac{Cyrillic, Ukraine,
Greek, Turkish }, Macintosh(European Language)

ISO-8859-{6,8}, CP{1255,1256}, CP862, Mac{Hebrew, Arabic} (Semitic

languages)

CP932, ISO-2022-JP, ISO-2022-JP-2, ISO-2022-JP-1(Japanese)

EUC-CN, CP936, EUC-TW, CP950(Chinese)

EUC-KR, CP949, JOHAB(Korean)

Georgian-Academy, Georgian-PS(Georgian)

KOI8-T(Tajik)

PT154(Kazakh)

TIS-620, CP874, MacThai(Thai)

MuleLao-1, CP1133(Laotian)

VISCII, TCVN, CP1258(Vietnamese)

SET CLIENT_CHAR_SET client-character-set-string

Figure 3-142 SET CLIENT CHARACTER SET syntax

 Example

Set the client character set to BIG5.
dmSQL> SET CLIENT_CHAR_SET 'BIG5';

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-291

3.91 SET ERRMSG_CHAR_SET
The SET ERRMSG_CHAR_SET command specifies the error message output
character set of the database client.

Clients can set their own error message output character set for mutilingual databases.

The command must be specified like 'language[_locale][.code]'. 'language' string
follows ISO-639 standards, it is must be lowercase; and 'locale'stirng follows ISO-
3166 standards,it is must be capital letter; 'code' string is the character set name that

DBMaker supported. For a language which has more than one locale, it should be
specified to which locale. For example, zh_CN or zh_TW, zh alone is invalid.

But, this command is only valid for the current session, once disconnect this session,

the setting set by this command can be useless.

DBMaker currently supports four languages for client error messages: English,
simplified Chinese, traditional Chinese and Japanese.

The Error table is stored in the dbmaker/5.4/shared/locale/locale_LANG/ directory.

To get client error message set, user can execute command SELECT
GETSYSINFO('ERRLCODE');

The valid values: en，jp，zh_CN and zh_TW or the combination of them and
character set.

Such as:

en
en.ASCII
en.ISO-8859-1

en.ISO-8859-2
en.ISO-8859-5
en.ISO-8859-7

en.UTF-8
ja
ja.SHIFT-JIS

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-292

ja.UTF-8
ja.EUC-JP
zh_CN

zh_CN.GBK
zh_CN.UTF-8
zh_CN.GB18030

zh_TW
zh_TW.BIG5
zh_TW.UTF-8

SET ERRMSG_CHAR_SET language[_l ocale][.encode]

Figure 3-143 SET ERRMSG_CHAR_SET syntax

 Example1

The following sets the client error message output character set with the locale 'ja'.
dmSQL> SET ERRMSG_CHAR_SET 'ja';

 Example2

The following sets the client error message output character set with the locale 'ja' and

the character set 'EUC_JP'.
dmSQL> SET ERRMSG_CHAR_SET 'ja.EUC-JP';

 Example3

The following sets the client error message output character set with the locale 'ja' and
the character set 'UTF-8'.
dmSQL> SET ERRMSG_CHAR_SET 'ja.UTF-8';

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-293

3.92 SUSPEND SCHEDULE
The SUSPEND SCHEDULE command suspends the replication schedule for an
asynchronous table replication. The local database will not try to connect to the
remote database until the replication schedule resumes. Only the local table owner, a

DBA, a SYSDBA, or a SYSADM can execute the SUSPEND SCHEDULE
command.

Use the SUSPEND SCHEDULE command to suspend a replication schedule for an

asynchronous table replication. To resume the replication schedule use the RESUME
SCHEDULE command.

remote_database_name….Name of the remote database to remove the replication

schedule from

SUSPEND SCHEDULE FOR REPLICATION TO remote_database_name

Figure 3-144 SUSPEND SCHEDULE syntax

 Example

The following suspends the replication schedule for the remote database named

DivOneDb.
dmSQL> SUSPEND SCHEDULE FOR REPLICATION TO DivOneDb;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-294

3.93 SYNC AUTO INDEX
The SYNC AUTO INDEX command wakes up the auto index daemon handing
mechanisms immediately. Only users with DBA, SYSDBA or SYSADM security
privileges can execute the SYNC AUTO INDEX command when the auto index

daemon starts.

Only when auto index daemon startups and the keyword AUTOCOMMIT is set to
ON, users can execute the SYNC AUTO INDEX command.

SYNC AUTO INDEX

Figure 3-145 SYNC AUTO INDEX syntax

 Example

The following example wakes up the auto index daemon when AUTOCOMMIT is

set to ON.
dmSQL> SYNC AUTO INDEX;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-295

3.94 SYNCHRONIZE SCHEDULE
The SYNCHRONIZE SCHEDULE command synchronizes all data in the remote
database with data in the local database without waiting for the next scheduled time.
Only the local table owner, a DBA, a SYSDBA, or a SYSADM can execute the

SYNCHRONIZE SCHEDULE command.

Use the SYNCHRONIZE SCHEDULE command to synchronize data in the local
and remote tables for an asynchronous table replication.

remote_database_name….Name of the remote database to synchronize the replication
schedule for

REPLICATION TO remote_database_name

NO WAIT

WAIT

SYNC

SYNCHRONIZE

Figure 3-146 SYNCHRONIZE SCHEDULE syntax

 Example

The following example synchronizes the replication schedule for the remote database
named DivOneDb.
dmSQL> SYNCHRONIZE REPLICATION TO DivOneDb;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-296

3.95 UNLOAD STATISTICS
The UNLOAD STATISTICS command unloads database statistics into an ASCII
text file. Edit the file and load the desired statistics data back into the database. Only
users with DBA, SYSDBA or SYSADM security privileges can execute the UNLOAD

STATISTICS command.

Load statistical information for an entire database, or for one or more tables. For each
table specify whether to load the table statistics information, the column statistics

information, the index statistics information, or a combination of the three.

DBMaker records table data statistics on the number of pages, the number of rows,
and the average row length of sampled rows in a table. DBMaker records column data

statistics on the number of distinct column values, the average column length, the low
value, and the high value for all sampled values in a column. DBMaker records index
data statistics on the number of index pages, the number of index tree levels, the

number of leaf pages, the number of distinct key values, the number of pages per key,
and the cluster count for the index.

object_listList of database objects to unload statistics data for

file_nameName of the ASCII text file that statistics data will be saved in

UNLOAD STATISTICS
object_list

TO file_name

Figure 3-147 UNLOAD STATISTICS syntax

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-297

UNLOAD STATISTICS Object List

index_name

,
INDEXTABLE

()

table_name

,

Figure 3-148 UNLOAD STATISTICS Object List syntax

 Example

The following unloads all STATISTICS to the file stat.dat.
dmSQL> UNLOAD STATISTICS TO stat.dat;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-298

3.96 UPDATE
The UPDATE command updates rows in a table. Rows in the system catalog tables
can not updated with this command. Only the table owner, a DBA, a SYSDBA, a
SYSADM, or a user with the UPDATE privilege for the entire table or for the specific

column can execute the UPDATE command.

When updating a column the new column values must satisfy the column constraints
and referential integrity. Use the DEFAULT keyword to set the value of the column

to the default.

table_nameName of the table containing the rows to update

column_nameName of the column to update values in

literalLiteral value to update the column with

expressionExpression that returns a value to update the column with

constantConstant value to update the column with

search_conditionConditions a row must meet to be updated

cursor_nameName of the cursor to use for a positioned update (cursors are
only available within ODBC programs)

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-299

UPDATE SETtable_name

WHERE
search_condition

CURRENT OF cursor_name

,

column_name =
constant

NULL
expression

literal

Figure 3-149 UPDATE syntax

 Example 1

The following shows how to update the Employeesinfo table and change the salary of
all employees named Chris.
dmSQL> UPDATE Employeesinfo SET Salary = 5000 WHERE FName = 'Chris';

 Example 2

The following shows how to give a salary raise of 10% to all employees named Chris.
dmSQL> UPDATE Employeesinfo SET Salary = Salary*1.10 WHERE FName = 'Chris';

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-300

3.97 UPDATE STATISTICS
The UPDATE STATISTICS command updates database statistics information.
Keeping statistics information current helps the database to perform queries more
efficiently. Only the owner of the object, a DBA, a SYSDBA, or a SYSADM can

execute the UPDATE STATISTICS command.

Update statistical information for the entire database or take update statistical
information for one or more tables. For each table specify whether to update statistical

information for the table, the column, the index, or a combination of the three. In
addition, specifying a number between 1 and 100 for the SAMPLE keyword can set
the percentage of data to sample.

DBMaker records index data statistics on the number of index pages, the number of
index tree levels, the number of leaf pages, the number of distinct key values, the
number of pages per key, and the cluster count for the index.

ALL: means forcibly update the statistics values for all schema objects.

SAMPLE: means the sampling rate expressed as a percentage of the whole, an integer
between 1 and 100.

object_listList of database objects to update statistics data for

numberPercentage of data to use when updating statistics data

UPDATE STATISTICS
object_list SAMPLE = number

ALL

Figure 3-150 UPDATE STATISTICS syntax

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-301

UPDATE STATISTICS Object List

DBMaker records table data statistics on the number of pages, the number of rows,

and the average row length of sampled rows in a table.

DBMaker also records column data statistics on the number of distinct column values,
the average column length, the low value, and the high value for all sampled values in

a column.

Figure 3-151 UPDATE STATISTICS Object List syntax

 Example 1

The following updates all STATISTICS in the database with a sampling of 30%.
dmSQL> UPDATE STATISTICS SAMPLE = 30;

 Example 2

The following updates all STATISTICS on table1.
dmSQL> UPDATE STATISTICS table1 SAMPLE = 50;

 Example 3

The following updates STATISTICS for index ix1 on table1.
dmSQL> UPDATE STATISTICS table1 (INDEX ix1);

 Example 4

The following updates STATISTICS for all indexes on table1.
dmSQL> UPDATE STATISTICS table1 (INDEX);

()

table_ name

index _name

,

,

INDEX

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-302

 Example 5

The following forcibly updates STATISTICS for all objects in a database.
dmSQL> UPDATE STATISTICS ALL;

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-303

3.98 UPDATE STATISTICS SET
The UPDATE STATISTICS SET command specifies every table's update statistics
method and sample ratio for update statistics daemon when it starts in every table
setting mode, that is to say, the value of DB_StMod is 1.

Every table's update statistics and sample ratio are stored in system table SYSTABLE.
The column UPD_STS_MODE stored the table statistics method, and the column
UPD_STS_SAMPLE stored the table statistics sample ratio.

If users set update statistics option for every table by executing the SQL statement
UPDATE STATISTICS SET, there are four filter conditions as follows:

• If it is a new table, that is to say, the table did not perform update statistics, then
execute automatic update statistics.

• If the total number of pages in the table is less than 20 pages, then execute
automatic update statistics.

• If the total number of pages in the table is more than 20 pages, the new page
number that is larger than 2 pages since the last automatic update statistics, then
execute automatic update statistics.

• If the table doesn't update statistics more than 10 days, execute automatic update
statistics.

table_name Name of the table

mode_value The table update statistics method

0: Sample ratio of table uses value of DB_StsSp in dmconfig.ini
but need to consider the above four filter conditions. The default

value is 0.
1: Sample ratio of table uses table update statistics sample ratio
which be set in sample_value but need to consider the above four

filter conditions.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-304

2: Sample ratio of table uses table update statistics sample ratio
which be set in sample_value regardless of the above four filter
conditions.

sample_valueThe table update statistics sample ratio

-1 : Intelligently obtain sample ratio

0: The database does not need to update statistics value

0 ~ 100: Table update statistics sample ratio, the default value is
100

,

table_name
UPDATE STATISTICS SET

MODE = mode_value
, SAMPLE = sample_value

, MODE = mode_value
 SAMPLE = sample_value

 Figure 3-152 UPDATE STATISTICS SET syntax

 Example 1

Setting the update statistics method and sample ratio for the table jeff.tb_staff :
dmSQL> UPDATE STATISTICS SET jeff.tb staff MODE = 1， SAMPLE = 80;
dmSQL> SELECT TABLE_NAME, TABLE_OWNER, UPD_STS_MODE, UPD_STS_SAMPLE FROM
SYSTABLE;
 TABLE_NAME TABLE_OWNER UPD_STS_MODE UPD_STS_SAMPLE
======================== ======================== ============= ===============
TB STAFF JEFF 1 80
1 rows selected

 Example 2

Setting the update statistics method and sample ratio for the table jeff.tb_staff and
jim.tb_salary :

_

_

1SQL Commands 3

©Copyright 1995-2017 CASEMaker Inc. 3-305

dmSQL> UPDATE STATISTICS SET jeff.tb staff, jim.tb salary MODE = 1, SAMPLE = 60;
dmSQL> SELECT TABLE_NAME, TABLE_OWNER, UPD_STS_MODE, UPD_STS_SAMPLE FROM
SYSTABLE;
 TABLE_NAME TABLE_OWNER UPD_STS_MODE UPD_STS_SAMPLE
======================== ======================== ============= ================
TB_STAFF JEFF 1 60
TB SALARY JIM 1 60
2 rows selected

_ _

_

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 3-306

3.99 UPDATE TABLESPACE
STATISTICS
The UPDATE TABLESPACE STATISTICS command updates tablespace statistical
information. Keeping statistical information current helps the tablespace to perform
queries more efficiently. Only users with DBA, SYSDBA or SYSADM security

privileges can execute the UPDATE TABLESPACE STATISTICS command.

DBMaker will update the tablespaces and associated file statistical value to update
tablespace statistics.

DBMaker records tablespace data statistics on the number of pages, the number of
free pages, the number of frames, and the number of free frames.

DBMaker records file data statistics on the number of pages/frames, and the number

of free pages/frames.

object_listList of database objects to update statistical data for

UPDATE TABLESPACE STATISTICS object_ list
Figure 3-153 UPDATE TABLESPACE STATISTICS syntax

 Example

The following updates the DEFTABLESPACE STATISTICS.
dmSQL> UPDATE TABLESPACE STATISTICS DEFTABLESPACE;

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-1

4 Functions

DBMaker provides a number of built-in functions, and also allows programmers to
build their own user-defined functions (UDF). For details, please refer to the
following sections.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-2

4.1 Built-in Functions
DBMaker provides a number of built-in functions. These functions can be used on
columns in a result set or columns that restrict rows in a result set. This chapter lists
each function by type. The arguments and returned values for each function are listed

below the syntax diagram providing the name, data type, and value.

The Built-in Functions types are:

 String functions

 Numeric functions

 Date and time functions

 System functions

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-3

4.1.1. ABS
The ABS function returns the absolute value of number, as a double precision floating-

point number.

number Double: Number to find the absolute value for

Return value Double: Absolute value of number

ABS (number)

Figure 4-1 ABS syntax

 Example

The following syntax returns 3.14000000000000e+012.
ABS(-3.14E12)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-4

4.1.2. ACOS
The ACOS function returns the arc cosine for a number in the double precision

floating-point number format. The number argument must be in the range 0 to π
radians.

numberDouble: Number to find the arc cosine for

Return valueDouble: The arc cosine for a number

ACOS (number)

Figure 4-2 ACOS syntax

 Example

The following syntax returns 1.04719755119660e+000.
ACOS(0.5)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-5

4.1.3. ADD_DAYS
The ADD_DAYS function returns a result from adding the number of days to the

date. The number argument may be a negative number.

date Date: Date to add days to

number Integer: Number of days to add

Return value Date: Result of adding number days to date

ADD_DAYS (date, number)

Figure 4-3 ADD_DAYS syntax

 Example 1

The following syntax returns the date1999-03-01.
ADD_DAYS('1999-02-24', 5)

 Example 2

The following syntax returns the date 2000-02-29.
ADD_DAYS('2000-02-24', 5)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-6

4.1.4. ADD_HOURS
The ADD_HOURS function returns a result after adding the number in hours to

time. The number argument may be a negative number.

timeTime: Time to add hours to

numberInteger: Number of hours to add

Return valueTime: Result of adding number hours to time

ADD_HOURS (time, number)

Figure 4-4 ADD_HOURS syntax

 Example 1

The following syntax returns the time 20:11:12.
ADD_HOURS('10:11:12', 10)

 Example 2

The following syntax returns the time 22:11:12.
ADD_HOURS('10:11:12', -12)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-7

4.1.5. ADD_MINS
The ADD_MINS function returns a result after adding the number in minutes to

time. The number argument may be a negative number.

time Time: Time to add minutes to

number Integer: Number of minutes to add

Return value Time: Result of adding number minutes to time

ADD_MINS (time, number)

Figure 4-5 ADD_MINS syntax

 Example 1

The following syntax returns the time 10:21:12.
ADD_MINS('10:11:12', 10)

 Example 2

The following syntax returns the time 09:59:12.
ADD_MINS('10:11:12', -12)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-8

4.1.6. ADD_MONTHS
The ADD_MONTHS function returns a result after adding a number in months to

date. The number argument may be a negative number.

date..........................Date: Date to add months to

numberInteger: Number of months to add

Return valueDate: Result of adding number months to date

ADD_MONTHS (date, number)

Figure 4-6 ADD_MONTHS syntax

 Example 1

The following syntax returns the date 1999-07-24.
ADD_MONTHS('1999-02-24',5)

 Example 2

The following syntax returns the date 2001-01-01.
ADD_MONTHS('2000-01-01',12)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-9

4.1.7. ADD_SECS
The ADD_SECS function returns a result after adding a number in seconds to time.
The number argument may be a negative number.

time Time: Time to add seconds to

number Integer: Number of seconds to add

Return value Time: Result of adding number seconds to time

ADD_SECS (time, number)

Figure 4-7 ADD_SECS syntax

 Example 1

The following syntax returns the time 10:11:22.
ADD_SECS('10:11:12',10)

 Example 2

The following syntax returns the time 10:10:52
ADD_SECS('10:11:12', -20)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-10

4.1.8. ADD_YEARS
The ADD_YEARS function returns a result after adding a number in years to date.
The number argument may be a negative number.

date..........................Date: Date to add years to

numberInteger: Number of years to add

Return valueDate: Result of adding number years to date

ADD_YEARS (date, number)

Figure 4-8 ADD_YEARS syntax

 Example 1

The following syntax returns the date 2001-03-04.
ADD_YEARS('1999-03-04', 2)

 Example 2

The following syntax returns the date 1995-02-28.
ADD_YEARS('2000-02-29', -5)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-11

4.1.9. ASCII
The ASCII function returns the ASCII code value of the first character in string. If

string contains no characters, a value of 0 (NULL) is returned. An error will be
returned when a value for the string argument is not specified.

string String: Character, in the first position to obtain an ASCII code

Return value Integer: ASCII code of the character specified in string

ASCII (string)

Figure 4-9 ASCII syntax

 Example 1a

The following syntax returns 65, which is the ASCII code for "A".
ASCII('A')

 Example 1b

The following syntax also returns 65, which is the ASCII code for "A".
ASCII('ABC')

 Example 2a

The following syntax returns 97, which is the ASCII code for "a".
ASCII('a')

 Example 2b

The following syntax also returns 97, which is the ASCII code for "a".
ASCII('abc')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-12

 Example 3a

The following syntax returns 49, which is the ASCII code for "1".
ASCII('1')

 Example 3b

The following syntax returns 33, which is the ASCII code for "!".
ASCII('!')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-13

4.1.10. ASIN
The ASIN function returns a double precision floating-point number from the arc

sine of number (in the range from -π/2 to π/2).

number Double: Number to find the arc sine for

Return value Double: Arc sine of number

ASIN (number)

Figure 4-10 ASIN syntax

 Example

The following syntax returns the arc sine of number: 5.23598775598299e-001.
ASIN(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-14

4.1.11. ATAN
The ATAN function returns a double precision floating-point number from the

tangent of number (in the range from -π/2 to π/2).

numberDouble: Number to find the arc tangent for

Return valueDouble: Arc tangent of number

ATAN (number)

Figure 4-11 ATAN syntax

 Example

The following syntax returns the arc tangent of number: 4.63647609000806e-001.
ATAN(0.5)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-15

4.1.12. ATAN2
The ATAN2 function returns the arc tangent of x/y in the range -π to π as a double

precision floating-point number.

x Double: Numerator in the ratio x/y to find the arc tangent for

y Double: Denominator in the ratio x/y to find the arc tangent for

Return value Double: Arc tangent of x/y

ATAN2 (x, y)

Figure 4-12 ATAN2 syntax

 Example

The following syntax returns the arc tangent of x/y, 4.63647609000806e-001.
ATAN2(0.1, 0.2)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-16

4.1.13. ATOF
The ATOF function returns the value represented by the character string in the string

argument as a double precision floating-point number.

stringString: String to convert to a double-precision floating-point

 number

Return valueDouble: Value of the character string in string

ATOF (string)

Figure 4-13 ATOF syntax

 Example 1

The following returns -1.23400000000000e+001, which is the double precision
floating-point value of the character string "-12.34".
ATOF('-12.34')

 Example 2

The following returns -1.23400000000000e+035, which is the double-precision

floating-point value of the character string "-12.34E34".
ATOF('-12.34E34')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-17

4.1.14. BLOBLEN
The BLOBLEN function returns the data length of an input BLOB. Please note,

BLOBLEN reports at most (231 - 1)B even when if the size is greater than or equal to
231B. BLOBLEN can get the data length for CLOB, BLOB, NCLOB and FILE type
objects.

object BLOB: Source BLOB

Return value Integer: Get BLOB type data length of source BLOB

BLOBLEN (blob)

Figure 4-14 BLOBLEN syntax

 Example

The following returns the BLOB length of "content".
BLOBLEN(content)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-18

4.1.15. BLOBLENEX
The BLOBLENEX function returns the data length of an input BLOB as a decimal

value. BLOBLENEX can get the data length for CLOB, BLOB, NCLOB and FILE
type objects. BLOBLENEX reports the correct BLOB size, unlike BLOBLEN, even
for BLOB size > 231B.

objectBLOB: Source BLOB

Return valueDecimal: Get BLOB type data length of source BLOB

BLOBLEN (blob)

Figure 4-15 BLOBLENEX syntax

 Example

The following returns the BLOB length of "content".
BLOBLENEX(content)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-19

4.1.16. CEILING
The CEILING function returns the integral value, greater than or equal to number, as

a double precision floating-point number.

number Double: Number to find the nearest larger integer value for

Return value Double: The next integer value greater than number

CEILING (number)

Figure 4-16 CEILING syntax

 Example 1

The following syntax returns 1.30000000000000e+001, which is the next integer
value with a value greater than 12.3.
CEILING(12.3)

 Example 2

The following syntax returns -1.20000000000000e+001, which is the next integer
value with a value greater than -12.3.
CEILING(-12.3)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-20

4.1.17. CHAR
The CHAR function returns the character that has the ASCII code value specified by

number. The value specified for number should be a valid ASCII code value between 0
and 255; other values are not valid ASCII codes and are not supported by the CHAR
function. Specifying a value that is not a valid ASCII code value may return incorrect

or invalid results. An error will be returned when a value for the number argument is
not provided.

numberInteger: ASCII code of the character to obtain

Return value String: Character represented by the ASCII code specified by number

CHAR (number)

Figure 4-17 CHAR syntax

 Example 1

The following syntax returns the string "A", which has an ASCII code value of 65.
CHAR(65)

 Example 2

The following syntax returns the string "a", which has an ASCII code value of 97.
CHAR(97)

 Example 3

The following syntax returns the string "1", which has an ASCII code value of 49.
CHAR(49)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-21

 Example 4

The following syntax returns the string "!", which has an ASCII code value of 33.
CHAR(33)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-22

4.1.18. CHAR_LENGTH
The CHAR_LENGTH function returns the number of characters in string, excluding

trailing blanks and the string termination character, when present. An error will be
returned if a value for the string argument is not provided.

stringString: String to find the length of

Return valueInteger: Leftmost count characters in string

CHAR_LENGTH (string _expression)

Figure 4-18 CHAR_LENGTH function syntax

 Example

The following function command returns "4".
dmSQL> SELECT CHAR_LENGTH(' abc ');
CHAR_LENGTH(' ABC ')
===========================
 4

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-23

4.1.19. CHARACTER_LENGTH
The CHARACTER_LENGTH function returns the number of characters in string,

excluding trailing blanks and the string termination character, when present. An error
will be returned if a value for the string argument is not provided.

string String: String to find the length of

Return value Integer: Leftmost count characters in string

CHARACTER_LENGTH (string_expression)

Figure 4-19 CHARACTER_LENGTH function syntax

 Example

The following function command returns "4".
dmSQL> SELECT CHARACTER_LENGTH(' abc ');
CHARACTER_LENGTH(' ABC ')
===========================
 4

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-24

4.1.20. CHECKMEDIAFORMAT
The CHECKMEDIAFORMAT function is used to check whether the BLOB content

matches the specified media format.

blobColumn name on which to perform the check

Media format:String: specify media format. The supported format is: DOC,

XLS, PPT, HTM, XML and PDF.

Return value:True if the record in the column matches media format

CHECKMEDIAFORMAT (blob, media_format)

Figure 4-20 Syntax for CHECKMEDIAFORMAT

 Example:

The following check whether the blob column match the DOC format.
dmSQL> CHECKMEDIAFORMAT(wordcol, 'DOC');

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-25

4.1.21. CONCAT
The CONCAT function returns a string expression formed by joining string1 and

string2. A return value will occur only if the string expression in string1 is placed at the
beginning of the result string, and the string expression in string2 is placed at the end
of the result string; an error will be returned if both values for the arguments have not

been provided.

DBMaker uses the following rule to determine the value returned if one of the string
expressions contains a NULL value.

Any string that is concatenated with a null value using the CONCAT built-in
function or concatenate operator (||) will return NULL. If you want to return the
string value when concatenating a string value with a null value, you must set the SET

CONCAT NULL RETURN option to STRING. A null value concatenated with a
null value will always return a null value, regardless of the value of the SET CONCAT
NULL RETURN built-in-function.

string1 String: String to place at the beginning of the result string

string2 String: String to place at the end of the result string

Return value String: Formed by joining string1 and string2

CONCAT (string1, string2)

Figure 4-21 CONCAT syntax

 Example 1

The following returns "master plan". Take notice the space at the end of the first
string.
CONCAT('master ', 'plan')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-26

 Example 2

The following returns "mastermind".
CONCAT('master', 'mind')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-27

4.1.22. COS
The COS function returns the cosine of number, expressed in radians, as a double

precision floating-point number.

number Double: Number to find the cosine for

Return value Double: The cosine of number

COS (number)

Figure 4-22 COS syntax

 Example

The following syntax returns a value of 8.77582561890373e-001.
COS(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-28

4.1.23. COSH
The COSH function returns the hyperbolic cosine of number, expressed in radians, as

a double precision floating-point number.

numberDouble: Number to find the hyperbolic cosine for

Return valueDouble: The hyperbolic cosine of number

COSH (number)

Figure 4-23 COSH syntax

 Example

The following returns the hyperbolic cosine of number; 1.12762596520638e+000.
COSH(0.5)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-29

4.1.24. COT
The COT function returns the cotangent of number, expressed in radians, as a double

precision floating point number.

number Double: Find the cotangent for number

Return value Double: The cotangent of number

COT (number)

Figure 4-24 COT syntax

 Example

The following returns the cotangent of number, 1.83048772171245e+000.
COT(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-30

4.1.25. CURDATE
The CURDATE function returns the current date.

Return valueDate: The current date

CURDATE ()

Figure 4-25 CURDATE syntax

 Example

The following returns the current date.
CURDATE()

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-31

4.1.26. CURRENT_DATE
The CURRENT_DATE function returns the current date from the default

date/time/timestamp DBMaker output format.

Return value DATE: The current date

CURRENT_DATE ()

Figure 4-26 CURRENT_DATE syntax

 Example 1

The following returns the current date.
dmSQL> INSERT INTO t1 VALUES (CURRENT_DATE);
dmSQL> SELECT CURRENT_DATE;
dmSQL> SELECY c1 FROM t1 WHERE c2 = CURRENT_DATE;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,

CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the
values, and then update the values.
dmSQL> INSERT INTO sql99t5 VALUES(CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
CURRENT_USER);
1 row inserted

dmSQL> SELECT CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER
============= ========== ======================== ============================
16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-32

dmSQL> UPDATE sql99t5 SET c1 = CAST(CURRENT_TIMESTAMP AS CHAR(20)),
 c2 = CURRENT_DATE,
 c3 = CURRENT_TIME,
 c4 = CURRENT_TIMESTAMP WHERE c1 = CURRENT_USER;
1 row updated

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-33

4.1.27. CURRENT_TIME
The CURRENT_TIME function returns the current time from the default time

DBMaker output format.

Return value TIME: The current time

CURRENT_TIME ()

Figure 4-27 CURRENT_ TIME syntax

 Example 1

The following returns the current time.
dmSQL> INSERT INTO t1 VALUES (CURRENT_TIME);
dmSQL> SELECT CURRENT_TIME;
dmSQL> SELECT c1 FROM t1 WHERE c2 = CURRENT_TIME;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,
CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the
values, and then update the values.
dmSQL> INSERT INTO sql99t5 VALUES(CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
CURRENT_USER);
1 row inserted

dmSQL> SELECT CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER
============= ========== ======================== ============================
16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

dmSQL> UPDATE sql99t5 SET c1 = CAST(CURRENT_TIMESTAMP AS CHAR(20)),
 c2 = CURRENT_DATE,
 c3 = CURRENT_TIME,

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-34

 c4 = CURRENT_TIMESTAMP WHERE c1 = CURRENT_USER;
1 row updated

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-35

4.1.28. CURRENT_TIMESTAMP
The CURRENT_TIMESTAMP function returns the current timestamp from the

default timestamp DBMaker output format.

Return value TIMESTAMP: The current timestamp

CURRENT_TIMESTAMP ()

Figure 4-28 CURRENT_ TIMESTAMP syntax

 Example 1

The following returns the current timestamp.
dmSQL> INSERT INTO t1 VALUES(CURRENT_TIMESTAMP);
dmSQL> SELECT CURRENT_TIMESTAMP;
dmSQL> SELECT c1 FROM t1 WHERE c2 = CURRENT_TIMESTAMP;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,
CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the

values, and then update the values.
dmSQL> INSERT INTO sql99t5 VALUES(CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
CURRENT_USER);
1 row inserted

dmSQL> SELECT CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER
============= ========== ======================== ============================
16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

dmSQL> UPDATE sql99t5 SET c1 = CAST(CURRENT_TIMESTAMP AS CHAR(20)),

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-36

 c2 = CURRENT_DATE,
 c3 = CURRENT_TIME,
 c4 = CURRENT_TIMESTAMP WHERE c1 = CURRENT_USER;
1 row updated

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-37

4.1.29. CURRENT_USER
The CURRENT_USER function returns the current user connected to DBMaker.

Return value USER: The current user

CURRENT_USER ()

Figure 4-29 CURRENT_ USER syntax

 Example 1

The following returns the current user.
dmSQL> INSERT INTO t1 VALUES (CURRENT_USER);
dmSQL> SELECT CURRENT_USER;
dmSQL> SELECT c1 FROM t1 WHERE c2 = CURRENT_USER;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,
CURRENT_TIMESTAMP and CURRENT_USER into one row, display the

values, and then update the values.
dmSQL> INSERT INTO sql99t5 VALUES(CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
CURRENT_USER);
1 row inserted

dmSQL> SELECT CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER
============= ========== ======================== ============================
16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

dmSQL> UPDATE sql99t5 SET c1 = CAST(CURRENT_TIMESTAMP AS CHAR(20)),
 c2 = CURRENT_DATE,
 c3 = CURRENT_TIME,

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-38

 c4 = CURRENT_TIMESTAMP WHERE c1 = CURRENT_USER;
1 row updated

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-39

4.1.30. CURTIME
The CURTIME function returns the current time.

Return value Time. The current time

CURTIME ()

Figure 4-30 CURRENTTIME syntax

 Example

The following syntax returns the current time.
CURTIME ()

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-40

4.1.31. DATABASE
The DATABASE function returns the name of the database corresponding to the

current connection. Alternately, determine the name of the database in an ODBC
program by calling the SQLGetConnectOption with the
SQL_CURRENT_QUALIFIER connection option.

Return valueString: The name of the database on the current connection

DATABASE ()

Figure 4-31 DATABASE syntax

 Example

The following returns the name of the database corresponding to the current
connection.
DATABASE()

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-41

4.1.32. DATEPART
The DATEPART function returns the date part of timestamp.

timestamp Timestamp: Timestamp to extract the date part from

Return value Date: Date part of timestamp

DATEPART (timestamp)

Figure 4-32 DATEPART syntax

 Example

The following syntax returns the date 1999-08-07.
DATEPART('1999-08-07 10:11:12.123')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-42

4.1.33. DAYNAME
The DAYNAME function returns a character string containing the data-source

specific name of the day (for example, Sunday, Monday, …, Saturday) that date falls
on.

date..........................Date: Date to find the name of the day for

Return valueString: Weekday that date falls on

DAYNAME (date)

Figure 4-33 DAYNAME syntax

 Example

The following returns "Saturday".
DAYNAME('1999-12-25')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-43

4.1.34. DAYOFMONTH
The DAYOFMONTH function returns the day of the month found in date as an

integer value in the range 1-31.

date Date: Find the day of the month for date

Return value Integer: Day of the month that date falls on

DAYOFMONTH (date)

Figure 4-34 DAYOFMONTH syntax

 Example

The following returns 23.
DAYOFMONTH('1999-01-23')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-44

4.1.35. DAYOFWEEK
The DAYOFWEEK function returns the day of the week found in date as an integer

value in the range 1-7, where 1 is Sunday, 2 is Monday, …, and 7 is Saturday.

date..........................Date: Find the day of the week for date

Return valueInteger: Day of the week that date falls on

DAYOFWEEK (date)

Figure 4-35 DAYOFWEEK syntax

 Example 1

The following returns 3.
DAYOFWEEK('2000-02-29')

 Example 2

The following returns 6.
DAYOFWEEK('2000-03-03')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-45

4.1.36. DAYOFYEAR
The DAYOFYEAR function returns the day of the year found in date as an integer

value in the range 1-366, 366 is only returned for the last day of a leap year.

date Date: Find the day of the year for date

Return value Integer: Day of the year that date falls on

DAYOFYEAR (date)

Figure 4-36 DAYOFYEAR syntax

 Example 1

The following returns 31.
DAYOFYEAR('1999-01-31')

 Example 2

The following returns 365.
DAYOFYEAR('1999-12-31')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-46

4.1.37. DAYS_BETWEEN
The DAYS_BETWEEN function returns the number of days between two dates. The

date1 argument can be earlier or later than the date2 argument.

date1Date: First of two dates

date2Date: Second of two dates

Return valueInteger: Number of days between date1 and date2

DAYS_BETWEEN (date1, date2)

Figure 4-37 DAYS_BETWEEN syntax

 Example 1

The following returns 31.
DAYS_BETWEEN('1999-01-15', '1999-02-15')

 Example 2

The following returns 31.
DAYS_BETWEEN('1999-02-15', '1999-01-15')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-47

4.1.38. DEGREES
The DEGREES function returns the number of degrees in radians as a double

precision floating-point number.

radians Date: Radians value to convert to degrees

Return value Double: Number of degrees in radians

DEGREES (radians)

Figure 4-38 DEGREES syntax

 Example

The following returns 1.79908747671078e+002.
DEGREES(3.14)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-48

4.1.39. DOCTOTXT
The DOCTOTXT function is used for converting Microsoft Word documents into a

temporary BLOB containing the pure text of blob as unicode. It returns temp blob or
NULL. In DBMaker current version, UDF will support office 2007- 2010 version.

Blob: Column name to be converted to pure text

Return value:temp BLOB as NCLOB type if blob is convertable to pure text.

COS (number)

Figure4-39 Syntax for DOCTOTXT

 Example

The following example illustrates converting the column memo to puretext.
DOCTOTXT(memo)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-49

4.1.40. EXISTSNODE
Function existsNode is used to check if specified node is found or not.

Xmldata………………XML content to be queried

Xpath-expression……user will use to query xmldata

Namespaces………... optionally specifies the namespace(s) used in xpath-expression

Returnvalue…………the result will be serialized into NCLOB.

EXISTSNODE(XMLdata, xpath - expression , namespaces)

Figure 4-40 EXISTSNODE syntax

 Example

This example illustrates creatring an index using the existsnode XML UDF:
dmSQL> CREATE INDEX idx1 ON t1 (EXISTSNODE(c1, '/order/items/item/@product',
NULL));

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-50

4.1.41. EXP
The EXP function returns the exponential function ex as a double precision floating-

point number.

xDouble: Power to raise the natural logarithm to

Return valueDouble: Natural logarithm (e) to the power of x

EXP (x)

Figure 4-41 EXP syntax

 Example

The following returns 2.71828182845905e+000.
EXP(1)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-51

4.1.42. EXTRACT
The EXTRACT function returns the multi-value, one value or zero value. It not allow

asc/desc and unique index

Return value: UDF: allows multi values, one value and zero value of the UDF
results

EXTRACT ()

Figure 4-42 EXTRACT syntax

 Example

To create an index use the extract XML UDF:
dmSQL> CREATE INDEX idx1 ON t1 (EXTRACT(c1, '/order/items/item/@product', NULL));

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-52

4.1.43. EXTRACTVALUE
The EXTRACTVALUE function only returns the one value or zero value. It allow

asc/desc and unique index

Return value:UDF: allow one and zero value UDF results, but not multi-value

EXTRACTVALUE ()

Figure 4-43 EXTRACTVALUE syntax

 Example

To create an index use the extractValue XML UDF:
dmSQL> CREATE INDEX idx2 ON t1 (EXTRACTVALUE(c1, '/order/items/item/@product',
NULL));

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-53

4.1.44. FILEEXIST
The FILEEXIST function determines if the file object specified by fileobject exists as a

physical file. Possible return values are 1 for a file that exists, and 0 file a file that does
not exist.

fileobject File: File object to check the existence of

Return value Integer: Boolean value indicating whether the file exists

FILEEXIST (fileobject)

Figure 4-44 FILEEXIST syntax

 Example 1

The following returns 1, indicating the file exists.
FILEEXIST(file_column)

 Example 2

The following returns 0, indicating the file does not exist.
FILEEXIST(nofile_column)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-54

4.1.45. FILELEN
The FILELEN function returns the file size of fileobject as an integer value. And it will
report at most (231 – 1)B even if the size is greater than or equal to 231B. The fileobject
argument must be a column in the database of the FILE data type.

fileobjectFile: File to find the length of

Return valueInteger: Length of the file in bytes

FILELEN (fileobject)

Figure 4-45 FILELEN syntax

 Example

The following returns 211 for a file that is 211 bytes in size.
FILELEN(file_column)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-55

4.1.46. FILELENEX
The FILELENEX function returns the file size of fileobject as a decimal value. The

fileobject argument must be a column in the database of the FILE data type. And
unlike FILELEN function, it can report the correct size for FOs > 231B.

fileobject File: File to find the length of

Return value Decimal: Length of the file in bytes

FILELEN (fileobject)

Figure 4-46 FILELENEX syntax

 Example

The following returns 211 for a file that is 211 bytes in size.
FILELENEX(file_column)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-56

4.1.47. FILENAME
The FILENAME function returns the file name of fileobject as a string. The fileobject
argument must be a column in the database of the FILE data type.

fileobjectFile: File to find the name of

Return valueString: Name of the file

FILENAME (fileobject)

Figure 4-47 FILENAME syntax

 Example

The following returns C:\PATH\MYFILE.FIL.
FILENAME(file_column)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-57

4.1.48. FIX
The FIX function returns an integer value for the integral part of number.

number Double: Number to find the integral part of

Return value Bigint: Integral part of number

FIX (number)

Figure 4-48 FIX syntax

 Example 1

The following returns 11.
FIX(11.99)

 Example 2

The following returns 12.
FIX(12.01)

 Example 3

The following returns a value of –11.
FLOOR(-11.99)

 Example 4

The following returns a value of –12.
FLOOR(-12.01)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-58

4.1.49. FLOOR
The FLOOR function returns a double-precision floating-point value for the greatest

integral value less than or equal to number.

numberDouble: Number to find the next integral value less than

Return valueDouble: Integral part of number

FLOOR (number)

Figure 4-49 FLOOR syntax

 Example 1

The following returns 1.20000000000000e+001.
FLOOR(12.01)

 Example 2

The following returns 1.10000000000000e+001.
FLOOR(11.99)

 Example 3

The following returns -1.20000000000000e+001.
FLOOR(-11.99)

 Example 4

The following returns -1.30000000000000e+001.
FLOOR(-12.01)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-59

4.1.50. FREXPE
The FREXPE function returns the exponent n from the equation nnumber 2X ×= as

an integer value, where the value of X is in the range 0.5 < X < 1.

number Double: Number to find the next exponent n for from the

 equation nnumber 2X ×=

Return value Integer: Exponent n from the equation nnumber 2X ×=

FREXPE (number)

Figure 4-50 FREXPE syntax

 Example

The following returns 3, where n must equal 3 when number equals 4.0 and X is
restricted to values between 0.5 and 1.
FREXPE(4.0)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-60

4.1.51. FREXPM
The FREXPM function returns the mantissa X from the equation

nnumber 2X ×= as a double-precision floating-point number, where the value of X

is in the range 0.5 < X < 1.

numberDouble. Number to find the next mantissa X for from the
equation nnumber 2X ×= .

Return valueInteger. Mantissa X from the equation nnumber 2X ×= .

FREXPM (number)

Figure 4-51 FREXPM syntax

 Example

The following returns the value of 5.00000000000000e-001, which means X must
equal 0.5 or 5.00000000000000e-001 when number equals 4.0 and n equals an exact

integer value.
FREXPM(4.0)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-61

4.1.52. FTOA
The FTOA function returns a string containing number with a fixed amount of digits

after the decimal point. The digits argument specifies the number of digits after the
decimal point, and the format argument specifies whether the return value should be
in regular decimal format or exponential format.

The format argument has four possible values, "f", "F", "e", and "E". Using "f" or "F"
returns a string in regular decimal format, for example, 123.45, when digits is 2. Using
"e" or "E" returns a string in exponential format, for example, 1.23e+02. After

conversion, the exponential digits will be converted to the regular decimal equivalent.

number Double: Number to convert to a string

digits........................ Integer: Number of digits after the decimal

format String: Format to return the number in

Return value String: String containing number with a fixed number of digits in
the specified format

FTOA (number, digits, format)

Figure 4-52 FTOA syntax

 Example 1

The following syntax returns the value "123.46".
FTOA(123.456789, 2, 'f')

 Example 2

The following syntax returns the value "1.23e+02".
FTOA(123.456789, 2, 'e')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-62

4.1.53. HIGHLIGHT
The HIGHLIGHT function returns the modified source text in which all of the

matching text patterns will be highlighted with preTag and endTag before and after.

At most 10000 (MaxTagSpace) byte tags can be added. If the pattern contains
Boolean operators [&, |, !, (,)], all the simple searching pattern will be tagged except

the ! (NOT) patterns. The inputted text's type can be CLOB, file, char or media type.

If the inputted text's type is XMLTYPE, the HIGHLIGHT function returns Error
6536, in this case, users can call the function PURETEXT to convert data with

XMLTYPE into that with NCLOB and then highlight patterns that matches
conditions.

textCLOB: Source Text

BoolPatnChar: Patterns to be hilighted, can be Boolean expression pattern

sensitiveInteger: Whether the match is case sensitive, 1 means yes and 0
means no

PreTagChar: Tag before pattern, NULL denotes none

EndTagChar: Tag after pattern, NULL denotes none

Return valueNCLOB: Modified source text after highlighting patterns

HIGHLIGHT (text, BoolPatn, sensitive, PreTag, EndTag)

Figure 4-53 HIGHLIGHT syntax

 Example 1

The following will return the modified content in which all "Intel" or "AMD" are

highlighted with preTag "<<" and endTag ">>".

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-63

dmSQL> SELECT HIGHLIGHT(content,'Intel | AMD',0,'<<','>>') FROM news WHERE
content MATCH 'Intel| AMD';

 Example 2

The following will return the modified content in which all "dbmaker" is highlighted

with preTag "<" and endTag ">".
dmSQL> CREATE TABLE tpdf(c1 SERIAL, c2 pdffiletype);
dmSQL> SELECT HIGHLIGHT(c2,'dbmaker',0,'<','>') FROM tpdf;

 Example 3

The following will return the modified content in which all "dbmaker" is highlighted
with preTag "<" and endTag ">".
dmSQL> CREATE TABLE txml(c1 SERIAL,c2 XMLTYPE);
dmSQL> SELECT HIGHLIGHT(PURETEXT(c2), 'dbmaker',0,'<','>') FROM txml;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-64

4.1.54. HITCOUNT
The HITCOUNT function returns the frequency of patterns found in source text.

Rule of count values for Boolean patterns are:

 a AND b : min(count(a), count(b))

 a OR b : count(a) + count(b)

 NOT a : count = 0

textCLOB: Source text

BoolPatnChar: Patterns to be highlighted can be Boolean expression

patterns

sensitiveInteger: Whether the match is case sensitive, 1/0 means yes/no,
respectively

Return valueInteger: The frequency of searched text patterns in the source text

HITCOUNT (text, BOOIPatn, sensitive)

Figure 4-54 HITCOUNT syntax

 Example

The following returns the frequency of "target" found in source data "content", and
the finding is case insensitive.
HITCOUNT(content, "target", 0)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-65

4.1.55. HITPOS
The HITPOS function shows the position information of the nth pattern found in

source text, the offset can be: start offset, end offset, pattern length, begin offset
(higher than 24 bits), BINARY, OR end offset (lower 8 bits). The offset starts at 1.

text CLOB: Source Text

BoolPatn Char: Patterns to be hilighted can be Boolean expression pattern

sensitive Integer: Whether the match is case sensitive, 1/0 means yes/no,
respectively

n Integer: The nth pattern in source text

RetType Char: Return position type:

0: begin offset (default setting)

1: end offset

2: pattern length (endoff - begoff + 1)

3: begin offset (higher 24 bits) BINARY OR end offset

 (lower 8 bits)

Return value Integer: Get position information of the nth pattern found in
source text. If nth pattern is not found, the value is 0

HITPOS (text, BoolPatn, sensitive, n , RetType)

Figure 4-55 HITPOS syntax

 Example

The following examples return 5, 3, 5 and 7 using the source text "a b A c".
HITPOS(src,'A', 1, 1, 0) = 5 ('A')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-66

HITPOS(src,'A&B' 0, 2, 0) = 3 ('b')
HITPOS(src,'a|b|c', 0, 3, 0) = 5 ('A')
HITPOS(src,'!a&c' 0, 1, 0) = 7 ('c')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-67

4.1.56. HMS
The HMS function returns the time hours: minutes: seconds in time format. The hours'
argument represents the hours' component of the time, and has valid values from 0 to
23. Hours must be entered using the 24-hour format; there is no method provided for
entering values for AM and PM to indicate the time in 12-hour format. The minutes'
argument represents the minutes' component of the time, and has valid values from 0
to 59. The seconds' argument represents the seconds' component of the time, and has
valid values from 0 to 59.

hours Integer: Hours component of the time

minutes Integer: Minutes component of the time

seconds Integer: Seconds component of the time

Return value Time: Time format composite of hours, minutes, and seconds

HMS (hours, minutes, seconds)

Figure 4-56 HMS syntax

 Example 1

The following returns 10:11:12, which is equivalent to 10:11:12 AM.
HMS(10, 11, 12)

 Example 2

The following returns 22:11:12, which is equivalent to 10:11:12 PM.
HMS(22, 11, 12)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-68

4.1.57. HOUR
The HOUR function returns the hour in time as an integer value in the range from 0

to 23.

timeTime: Time to find the hour component of

Return valueInteger: Hour component of time

HOUR (time)

Figure 4-57 HOUR syntax

 Example 1

The following returns 10.
HOUR('10:11:12')

 Example 2

The following returns 22.
HOUR('PM 10:11:12')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-69

4.1.58. HTMLHIGHLIGHT
The HTMLHIGHLIGHT function returns modified source data in which all text

matching patterns will be highlighted with preTag and endTag before and after.
HTMLHIGHLIGHT also provides a highlight function to quote the patterns in an
HTML file without destroying the HTML document structure.

At most 10000 (MaxTagSpace) byte tags can be added. If the pattern contains Boolean
operators [&, |, !, (,)], all the simple searching pattern will be tagged expect the !
(NOT) patterns. The input text can be CLOB, file or char type. No content inside

tags, including comments, will be highlighted. All tags (include comments) are treated
as SPACE character. For example, if pattern is "DBMaker License", then the HTML
data "DBMaker
License" will be highlighted. However, if the HTML data is

"DBMaker", it will not match "DBMaker" pattern! Only the data after
<BODY> can be highlighted.

text CLOB: Source text.

BoolPatn Char: Patterns to be highlighted can be Boolean expression
pattern

sensitive Integer: Whether the match is case sensitive, 1/0 means yes/no,

respectively

PreTag Char: The tag after pattern, NULL denotes none

EndTag Char: The tag after pattern, NULL denotes none

Return value BLOB: The modified text after highlighting patterns

HTMLHIGHLIGHT (text, BoolPatn, sensitive, PreTag, EndTag)

Figure 4-58 HTMLHIGHLIGHT syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-70

 Example

The following returns modified content in which all text matching "Intel" or "AMD"
will be highlighted with "<<" and ">>" before and after.
HTMLHIGHLIGHT(content,'Intel | AMD',0,'<<','>>')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-71

4.1.59. HTMLTITLE
The HTMLTITLE function finds the title (text between html tags "<title>" and

"</title>" in source HTML data) of HTML data.

object BLOB: Source HTML data

Return value Varchar: Return the title of the source HTML data

HTMLTITLE(object)

Figure 4-59 HTMLTITLE syntax

 Example

The following returns title in source HTML data "htmlFile".
HTMLTITLE(htmlFile)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-72

4.1.60. HTMTOTXT
The HTMTOTXT function can be used to convert html document to a temporary

BLOB containing the pure text of blob as local code.

Blob: Column name on which to be converted to pure text

Return value:temp blob as CLOB type if blob could be converted to pure text

HTMTOTXT (blob)

Figure4-60 Syntax for HTMTOTXT

 Example

The following will convert the column memo to puretext.
HTMTOTXT(memo)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-73

4.1.61. HYPOT
The HYPOT function returns the length of the hypotenuse of a right angle triangle as

a double precision floating-point number. The hypotenuse is calculated according to
the equation z2 = x2 + y2 (Pythagorean Theorem), where z is the length of the
hypotenuse.

x Double: Length of one leg of the right triangle you are finding
the hypotenuse for

y Double: Length of the other leg of the right triangle you are

finding the hypotenuse for

Return value Double: Length of the hypotenuse of the right triangle

HYPOT (x, y)

Figure 4-61 HYPOT syntax

 Example

The following returns 5.
HYPOT(3,4)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-74

4.1.62. INSERT
The INSERT function returns a character string where length characters from string1

have been replaced by string2 beginning at start. The value of start indicates the
position in string1 where the first character of string2 is placed. If the value of length is
zero, string2 is inserted into string1 without replacing any characters. An error is

returned if a value for all arguments is not provided.

DBMaker uses the following rules to determine the value returned if one of the string
expressions contains a NULL value or if one of the integer arguments contains an

atypical value:

 If string1 contains a NULL value, the function returns a NULL value

 If start, length, or string2 contains a NULL value, the function returns the string

expression in string1

 If the value of start is less than or equal to zero, or the value of length is less than
zero, the function returns the string expression in string1

 If the value of start is greater than the length of string1 plus one, the function
returns the string expression in string1

string1String: String to insert characters into

startInteger: Position where the first character from string2 is inserted
in string1

lengthInteger: Number of characters to replace in string1

string2String: String to insert into the original source string

Return valueString: String formed by inserting string1 in string2

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-75

INSERT (string1, start, length, string2)

Figure 4-62 INSERT syntax

 Example 1

The following returns the string "Good ng!"
INSERT('morning!', 1, 5, 'Good ')

 Example 2

The following returns the string "Good morning!"
INSERT('Good ', 6, 8, 'morning!')

 Example 3

The following returns the string "Good night!"
INSERT('Good morning!', 6, 7, 'night')

 Example 4

The following returns the string "Good morning, sir. Here is your coffee."
INSERT('Good morning! Here is your coffee.', 13, 1, ', sir.')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-76

4.1.63. INVDATE
The INVDATE function determines if the date specified by the date argument is
valid. Possible return values are:

 1 for invalid dates (e.g., out of date range)

 0 for valid dates (e.g., '0001-01-01' to '9999-12-31')

 -1 for dates with unknown values (e.g., NULL values)

date..........................Date: Date to check the validity of

Return valueInteger: Boolean value indicating whether the date is valid

INVDATE (date)

Figure 4-63 INVDATE syntax

 Example

The following returns a 0, indicating the date is valid.
INVDATE('2000-01-01')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-77

4.1.64. INVTIME
The INVTIME function determines if the time specified by the time argument is
valid. Possible return values are:

 1 for invalid times (e.g., out of time range)

 0 for valid times (e.g., '00:00:00' to '24:00:00')

 -1 for times with unknown values (e.g., NULL values)

time Time: Time to check the validity of

Return value Integer: Boolean value indicating whether the time is valid

INVTIME (time)

Figure 4-64 INVTIME syntax

 Example

The following returns a 0, indicating the time is valid.
INVTIME('01:01:01')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-78

4.1.65. INVTIMESTAMP
The INVTIMESTAMP function determines if the timestamp specified with a

timestamp argument is valid. Possible return values are:

 1 for invalid timestamps (e.g., out of timestamp range)

 0 for valid timestamps (e.g., '00:00:00' to '24:00:00')

 -1 for timestamps with unknown values (e.g., NULL values)

timestampTimestamp: Timestamp to check the validity of

Return valueInteger: Boolean value indicating whether the timestamp is valid

INVTIMESTAMP (timestamp)

Figure 4-65 INVTIMESTAMP syntax

 Example

The following returns a 0, indicating the timestamp is valid.
INVTIMESTAMP('1999-08-07 10:11:12.123')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-79

4.1.66. LAST_DAY
The LAST_DAY function returns the last date in the same month as the date specified

in the date argument.

date Date: Date to find the last date in the same month of

Return value Date: Last date in the same month as date

LAST_DAY (date)

Figure 4-66 LAST_DAY syntax

 Example 1

The following returns '1996-02-29'.
LAST_DAY('1996-02-08')

 Example 2

The following returns '2002-12-31'.
LAST_DAY('2002-12-25')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-80

4.1.67. LCASE
The LCASE function converts all upper case letters in string to lower case; numbers

and symbols are not affected. If the string argument is NULL, a NULL value is
returned. If you do not provide a value for the string argument, an error will be
returned.

stringString: Text to convert to lower case

Return valueString: Text from the string argument in lower case

LCASE (string)

Figure 4-67 LCASE syntax

 Example 1

The following returns the string "abcdef ".
LCASE('ABCdef')

 Example 2

The following returns the string "abc123".
LCASE('ABC123')

 Example 3

The following returns the string "abc@#$".
LCASE('ABC@#$')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-81

4.1.68. LDEXP
The LDEXP function returns the result of the equation nnumber 2X ×= as a

double precision floating-point number.

x Double: Mantissa x from the equation nnumber 2X ×=

n Integer: Exponent n from the equation nnumber 2X ×=

Return value Double: Result of the equation nnumber 2X ×=

LDEXP (x, n)

Figure 4-68 LDEXP syntax

 Example

The following returns 8.00000000000000e+000.
LDEXP(0.5, 4)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-82

4.1.69. LEFT
The LEFT function returns the leftmost count characters in string. If the value of count
is less than zero, a NULL value is returned. All arguments must be provided otherwise

an error is returned.

stringString: String to extract characters from

countInteger: Number of characters to extract

Return valueString: Leftmost count characters in string

LEFT (string,count)

Figure 4-69 LEFT syntax

 Example

The following returns the string "Good".
LEFT('Good morning!', 4)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-83

4.1.70. LENGTH
The LENGTH function returns the number of characters in string, excluding trailing

blanks and the string termination character, when present. An error is returned if a
value for the string argument is not provided.

string String: String to find the length of

Return value Integer: Leftmost count characters in string

LENGTH (string)

Figure 4-70 LENGTH syntax

 Example

The following returns 13.
LENGTH('Good morning! ')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-84

4.1.71. LOCATE
The LOCATE function returns the starting position of the first occurrence of string1

in string2. The search for the first occurrence of string1 begins with the character
position specified by start. Assigning a value of 1 to start indicates the search should
begin with the first character in string2. If string1 is not found in string2, a value of 0 is

returned. DBMaker uses the following rules to determine the value returned if one of
the string expressions contains a NULL value or when start contains an atypical value:

 If string1 contains a NULL value, the function will return a NULL value

 If string2 or start contain a NULL value, the function will return 0

 If start is less than or equal to zero, the function will return the correct value

 If start is greater than the length of string2 plus one, the function will return 0

string1String: String to locate

string2String: String to search

startInteger: Position in string2 to start searching

Return valueInteger: Starting position of string1 in string2

LOCATE (string_exp1, string_exp2, 1)

Figure 4-71 LOCATE syntax

 Example 1

The following syntax returns a value of 4.
LOCATE('def', 'abcdefghi', 1)

 Example 2

The following syntax returns the value of 0.

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-85

LOCATE('def', 'abcdefghi', 5)

 Example 3

The following syntax returns a value of 4.
LOCATE('def', 'abcdefghi', 4)

 Example 4

The following syntax returns a value of 4.
LOCATE('def', 'abcdefghi', -1)

 Example 5

The following syntax returns a value of 0.
LOCATE('def', 'abcdefghi', 10)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-86

4.1.72. LOG
The LOG function returns the natural logarithm of x as a double-precision floating-

point number.

xDouble: Value to find the natural logarithm of

Return valueDouble: Natural logarithm of x

LOG (x)

Figure 4-72 LOG syntax

 Example

The following returns 1.00000000000000e+000.
LOG(2.71828182845905e+000)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-87

4.1.73. LOG10
The LOG10 function returns the logarithm with base 10 of x as a double precision

floating-point number.

x Double: Value to find the natural logarithm with base 10 of x

Return value Double: Natural logarithm with base 10 of x

LOG10 (x)

Figure 4-73 LOG10 syntax

 Example

The following returns 2.
LOG10(100)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-88

4.1.74. LOWER
The LOWER function performs the same calculation as LCASE. It makes all

characters in the string lower case characters.

String_expression String: string to convert all characters in lower case

Return value String: the returned characters in lower case converted from

characters in upper case

LOWER (string_expression)

Figure 4-74 Lower function syntax

 Example
dmSQL> SELECT LOWER('ABCDEF');
LOWER('ABCDEF')
=================
abcdef

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-89

4.1.75. LTRIM
The LTRIM function returns the characters of string with leading blanks removed. All

arguments must be provided otherwise an error is returned.

string String: String to trim characters from the left of

Return value String: String with leading blanks removed

LTRIM (string)

Figure 4-75 LTRIM syntax

 Example

The following returns the string "Good morning!"
LTRIM(' Good morning!')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-90

4.1.76. MDY
The MDY function returns the date month/day/year in the current date format. The

month argument represents the month component of the date, and has valid values
from 1 to 12. The day argument represents the day component of the time, and has
valid values from 1 to 31. The year argument represents the year component of the

time, and has valid values from 0001 to 9999.

monthInteger: Month component of the date

dayInteger: Day component of the date

yearInteger: Year component of the date

Return valueDate: Date format composite of hours, minutes and seconds

MDY (month, day, year)

Figure 4-76 MDY syntax

 Example 1

The following returns the date 1996-02-08 when the current date format is set to

yyyy-mm-dd.
MDY(2,8,1996)

 Example 2

The following returns the date 02/08/2001 when the current date format is set to
mm/dd/yyyy.
MDY(2,8,2001)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-91

4.1.77. MINUTE
The MINUTE function returns the minutes in time as an integer value in the range

from 0 to 59.

time Time: Time to find the minute component of

Return value Integer: The minute component of time

Figure 4-77 MINUTE syntax

 Example

The following returns 11.
MINUTE('10:11:12')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-92

4.1.78. MOD
The MOD function returns the remainder, modulus, of x divided by y as a double

precision floating-point number.

xDouble: Dividend

yDouble: Divisor

Return valueDouble: Remainder

MOD (x, y)

Figure 4-78 MOD syntax

 Example

The following returns 2.00000000000000e+000.
MOD(17, 3)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-93

4.1.79. MODFI
The MODFI function returns a double precision floating-point number for the

integer part of number.

number Double: Number to determine the integer part of

Return value Double: Integer part of number

Figure 4-79 MODFI syntax

 Example 1

The following returns 3.00000000000000e+000.
MODFI(3.1415926535897936)

 Example 2

The following returns -3.00000000000000e+000.
MODFI(-3.1415926535897936)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-94

4.1.80. MODFM
The MODFM function returns a double-precision floating-point number for the

mantissa part of number.

numberDouble: Number to determine the mantissa part of

Return valueDouble: Mantissa part of number

Figure 4-80 MODFM syntax

 Example 1

The following returns the value of 1.41592653589790e-001.
MODFM(3.1415926535897936)

 Example 2

The following returns the value of -1.41592653589790e-001.
MODFM(-3.1415926535897936)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-95

4.1.81. MONTH
The MONTH function returns the month in date as an integer value in the range

from 1 to 12.

date Date: Date to find the month component of

Return value Integer: The month component of date

Figure 4-81 MONTH syntax

 Example

The following returns 2.
MONTH('1996-02-29')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-96

4.1.82. MONTHNAME
The MONTHNAME function returns a character string containing the data-source

specific name of the month (e.g., JAN, FEB, …, DEC) that date falls on. The date
argument must be a valid date or DBMaker will return an error.

date..........................Date: Date to find the name of the month for

Return valueString: The name of the month that date falls in

Figure 4-82 MONTHNAME syntax

 Example

The following returns "FEB".
MONTHNAME('1996-02-29')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-97

4.1.83. NEXT_DAY
The NEXT_DAY function returns the date proceeding the date that weekday falls on.

Valid values for the weekday argument are the names of the days of the week
(Monday, Tuesday, …, Sunday) or their abbreviations (Mon, Tue, …, Sun). Values
for weekday are not case-sensitive.

date Date: Date after which to find the next date that a weekday falls
on

weekday String: Weekday the date will fall on

Return value Date: Next date after date that weekday falls on

Figure 4-83 NEXT_DAY syntax

 Example 1

The following syntax returns the date 1996-03-04.
NEXT_DAY('1996-02-29', 'Monday')

 Example 2

The following syntax returns the date 1996-03-05.
NEXT_DAY('1996-02-29', 'Tuesday')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-98

4.1.84. NOW
The NOW function returns the current date and time as a timestamp value.

Return valueTimestamp: The current date and time

Figure 4-84 NOW syntax

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-99

4.1.85. PDFTOTXT
The PDFTOTXT function can be used to converts pdf document to a temporary

BLOB containing the pure text of blob as unicode. it will return temp blob or NULL.
Please note that PDF's formats supported by DBMaker are 1.2, 1.3, 1.4, 1.5, 1.6 and
1.7.

Blob: Column name on which to be converted to pure text

Return value: temp blob as NCLOB type if blob could be converted to pure text

PDFTOTXT (blob)

Figure 4-85 Syntax for PDFTOTXT

 Example

The following will convert the column memo to puretext.
PDFTOTXT(memo)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-100

4.1.86. PI
The PI function returns the constant value of π, 3.1415926535897936, as a decimal

number with a precision of 38 and a scale of 16.

Return valueDecimal: The constant value π

Figure 4-86 PI syntax

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-101

4.1.87. POSITION
The POSITION function returns the starting position of the first occurrence of

string1 in string2. If string1 is not found in string2, a value of 0 is returned. DBMaker
uses the following rules to determine the value returned if one of the string expressions
contains a NULL value or when start contains an atypical value:

 If string1 contains a NULL value, the function will return a NULL value

 If string2 or start contain a NULL value, the function will return 0

string1 String: String to locate

string2 String: String to search

Return value Integer: Starting position of string1 in string2

POSITION (string_exp1 IN string_exp2)

Figure 4-87 POSITION function syntax

 Example 1

The following function command returns the value of "4".
dmSQL> SELECT POSITION('abc' in 'defabcjlkjl');
POSITION('ABC' IN 'DEFABCJLKJL')
================================
 4

 Example 2

The following function command returns the value of "1".
dmSQL> SELECT POSITION('abc' in 'abcdefghihj');
POSITION('ABC' IN 'ABCDEFGHIHJ')
================================
 1

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-102

 Example 3

The following function command returns the value of "0".
dmSQL> SELECT POSITION('abc' in 'jlkjlkklj');
POSITION('ABC' IN 'JLKJLKKLJ')
==============================
 0

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-103

4.1.88. POW
The POW function returns xy as a double-precision floating-point number.

x Double: Number to raise to a power y

y Double: Power to raise number x to

Return value Double: Value of x to the power y

Figure 4-88 POW syntax

 Example

The following returns 8.00000000000000e+000.
POW(2, 3)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-104

4.1.89. PPTTOTXT
The PPTTOTXT function can be used to convert Microsoft PowerPoint document

to a temporary BLOB containing the pure text of blob as unicode.it will return temp
blob or NULL. In DBMaker current version, UDF will support office 2007- 2010
version.

Blob: Column name on which to be converted to pure text

Return value:temp blob as NCLOB type if blob could be converted to pure text.

PPTTOTXT (blob)

Figure 4-89 Syntax for PPTTOTXT

 Example

The following will convert the column memo to puretext.
PPTTOTXT(memo)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-105

4.1.90. PURETEXT
The PURETEXT function can be use to convert blob to a temporary BLOB

containing the pure text of blob as unicode.

When use PURETEXT on the column with media type or a domain with text
converter will implicitly call the text converter function.

Blob: Column name on which to be converted to pure text

Return value: temp blob as NCLOB type if blob could be converted to pure text

PURETEXT (blob)

Figure 4-90 Syntax for PURETEXT

 Example

The following will convert the column memo to puretext.
PURETOTXT(memo)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-106

4.1.91. QUARTER
The QUARTER function returns the quarter that date falls in as an integer value in

the range 1 to 4, where 1 represents January 1 through March 31.

date..........................Date: Date to find the quarter for

Return valueInteger: The quarter that date falls in

Figure 4-91 QUARTER syntax

 Example

The following returns the value of 1.
QUARTER('2002-01-20')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-107

4.1.92. RADIANS
The RADIANS function returns the number of radians in degrees as a double precision

floating-point number.

degrees Double: Number of degrees to convert to radians

Return value Double: Number of radians in degrees

Figure 4-92 RADIANS

 Example

The following returns 3.14159265358979e+000.
RADIANS(180)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-108

4.1.93. RAND
The RAND function returns a random Integer value.

Return valueInteger: Random number

Figure 4-93 RAND syntax

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-109

4.1.94. REPEAT
The REPEAT function returns a character string composed of string repeated count
times. DBMaker uses the following rules to determine the value returned if the string
expression contains a NULL value or is an empty string. If string or count contained in
a NULL value, the function returns a NULL value. If count is less than 0 or string is an

empty string, the function returns an empty string. If you do not provide a value for
all arguments, an error will be returned.

string String: String to repeat

count Integer: Number times to repeat string

Return value String: String composed of string repeated count times

Figure 4-94 REPEAT syntax

 Example 1

The following returns the string "Good morning! Good morning!"
REPEAT('Good morning! ', 2)

 Example 2

The following returns the string "Zzzz Zzzz Zzzz Zzzz".
REPEAT('Zzzz ', 4)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-110

4.1.95. REPLACE
The REPLACE function replaces all occurrences of string2 in string1 with string3.

DBMaker uses the following rules to determine the value returned if one of the string
expressions contains a NULL value or is an empty, zero length, and string:

 If string1 is NULL return NULL

 If string2 or string3 is NULL return string1

 If string2 is empty return string1

string1String: String to replace characters in

string2String: String to replace

string3String: String to replace with

Return valueString: String composed of string1 with all occurrences of string2

replaced with string3

Figure 4-95 REPLACE syntax

 Example 1

The following returns the string "Good evening! Good evening!"
REPLACE('Good morning! Good morning!', 'morning', 'evening')

 Example 2

The following example returns the string "Goodbye Dave."
REPLACE('Hello, Dave.', 'Hello,', 'Goodbye')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-111

4.1.96. RIGHT
The RIGHT function returns the rightmost count characters in string. If the value of

count is less than zero, a NULL value is returned. All arguments must be provided
otherwise an error is returned.

string String: String to extract characters from

count Integer: Number of characters to extract

Return value String: Rightmost count characters in string

Figure 4-96 RIGHT syntax

 Example

The following returns the string "morning!"
RIGHT('Good morning! ', 10)

NOTE There are two spaces after the exclamation point in both the function argument
and the return value.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-112

4.1.97. RND
The RND function rounds number to the nearest integer.

numberDouble: Number to round

Return valueBigint: Nearest integer value to number

Figure 4-97 RND syntax

 Example 1

The following returns 12.
RND(12.01)

 Example 2

The following returns 12.
RND(12.49)

 Example 3

The following returns 13.
RND(12.50)

 Example 4

The following returns 13.
RND(12.99)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-113

4.1.98. ROUND
The ROUNDS function returns number rounded according to the decimal_places
argument. The decimal_places argument may be a negative number, and the
decimal_places argument must be an integer.

Rule of rounding for ROUND function are:

 If the decimal_places argument is omitted, the ROUND function will round the
number to 0 decimal places.

 If the decimal_places argument is bigger than 0, the ROUND function will round

off digits right of the decimal point.

 If the decimal_places argument is equal 0, the ROUND function will round the
number to the nearest integer.

 If the decimal_places argument is smaller than 0, the ROUND function will
round off digits left of the decimal point.

number Double: Number to round

decimal_places Integer: Number of decimal places rounded to

Return value Bigint: Nearest integer or decimal value to number

Figure 4-98 ROUND syntax

 Example 1

The following returns 124.
ROUND(123.56)

 Example 2

The following returns 37.2690000000000000000.
ROUND(37.269412, 3)

ROUND (,)number decimal_places

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-114

 Example 3

The following returns 125.3611000000000000000.
ROUND(125.361080, 4)

 Example 4

The following returns 8912341.0000000000000000000.
ROUND(8912341.123456, 0)

 Example 5

The following returns 1234600.0000000000000000000.
ROUND(1234591.123450, -2)

NOTE Round function return type is decimal(38,19). Therefore, dmsql display would have
19 digit on the right of the decimal point.

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-115

4.1.99. RTRIM
The RTRIM function returns the characters of string with trailing blanks removed. All

arguments must be provided otherwise an error is returned.

string String: String to trim characters from the right of

Return value String: String with trailing blanks removed

Figure 4-99 RTRIM syntax

 Example

The following returns the string "Good morning!"
RTRIM('Good morning! ')

NOTE There are two spaces after the exclamation point in the function argument.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-116

4.1.100. SECOND
The SECOND function returns the seconds in time as an integer value in the range

from 0 to 59.

timeTime: Time to find the second component of

Return valueInteger: The second component of time

Figure 4-100 SECOND syntax

 Example

The following returns 12.
SECOND('10:11:12')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-117

4.1.101. SECS_BETWEEN
The SECS_BETWEEN function returns the number of seconds between two times.
The time1 argument can be earlier or later than the time2 argument.

time1 Time: First time of two to calculate the number of seconds

 between

time2 Time: Second time of two to calculate the number of

 seconds between

Return value Integer: Number of seconds between time1 and time2

Figure 4-101 SECS_BETWEEN syntax

 Example

The following returns 36000.
SECS_BETWEEN('10:10:10', '20:10:10')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-118

4.1.102. SESSION_USER
The SESSION_USER function returns the current user connected to DBMaker.

Return valueThe current session user

SESSION_USER

Figure 4-102 SESSION_ USER syntax

 Example

The following returns the current SESSION_USER.
dmSQL> INSERT INTO t1 VALUES (SESSION_USER);
dmSQL> SELECT SESSION_USER;
dmSQL> SELECT c1 FROM t1 WHERE c2 = SESSION_USER;

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-119

4.1.103. SIGN
The SIGN function returns an integer indicating the sign of number. The values

returned are +1 for positive numbers, 0 for zero, and -1 for negative numbers.

number Double: Number to find the sign of

Return value Integer: Value corresponding to the sign of number

Figure 4-103 SIGN syntax

 Example 1

The following returns the value of 1.
SIGN(12.3)

 Example 2

The following returns the value of 0.
SIGN(0)

 Example 3

The following returns the value of –1.
SIGN(-12.3)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-120

4.1.104. SIN
The SIN function returns the sine of number, expressed in radians, as a double

precision floating-point number.

numberDouble: Number to find the sine for

Return valueDouble: The sine of number

Figure 4-104 SIN syntax

 Example

The following returns the value of 4.79425538604203e-001.
SIN(0.5)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-121

4.1.105. SINH
The SINH function returns the hyperbolic sine of number, expressed in radians, as a

double precision floating-point number.

number Double: Number to find the hyperbolic sine for

Return value Double: The hyperbolic cosine of number

Figure 4-105 SINH syntax

 Example

The following returns the value of 5.21095305493747e-001.
SINH(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-122

4.1.106. SPACE
The SPACE function returns a character string consisting of count spaces. If the value

of count is less than zero, a NULL value is returned.

countInteger: Number of spaces

Return valueString: String containing count spaces

Figure 4-106 SPACE syntax

 Example 1

The following returns a string consisting of three blank spaces " ".
SPACE(3)

 Example 2

The following returns the string " Good morning!" with three blank spaces in front.
CONCAT(SPACE(3), 'Good morning!')

NOTE There are three spaces before the first letter in the return value.

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-123

4.1.107. SQRT
The SQRT function returns the square root of x as a double-precision floating-point

number.

x Double: Number to find the square root of

Return value Double: Square root of x

Figure 4-107 SQRT syntax

 Example

The following returns 1.30000000000000e+001.
SQRT(169)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-124

4.1.108. STRTOINT
The STRTOINT function converts the string to an integer, when the string argument

is NULL a NULL value is returned. An error is returned if the string cannot be
converted to an integer.

stringString: String to convert to number

Return valueBigint: integer converted by string

STRTOINT (string)

Figure 4-108 STRTOINT syntax

 Example

The following returns 1234.
STRTOINT('1234')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-125

4.1.109. SUBBLOB
The SUBBLOB function returns a temporary BLOB from an input blob beginning at

the byte position specified by start for length bytes. The first BLOB byte is counted
from 1. This function is an add-on; run the script libblob.sql provided by DBMaker
to install it. DBMaker uses the following rules to determine the value returned if one

of the expressions contains a NULL value or is zero.

 If blob is NULL the function returns a NULL value

 If start or length is NULL the function returns a temporary BLOB

 If start < 0 or length < 0 the function returns a NULL value

 If start > length of blob the function returns a NULL value

 If length is 0, the function returns an empty temporary BLOB

blob BLOB: CLOB, FILE to extract partial data from

start Integer: Position to begin extracting the data of blob

length Integer: Number of bytes to extract

Return value BLOB: Temporary BLOB extracted from blob

Figure 4-109 SUBBLOB syntax

 Example

The following returns temporary BLOB data extracted from Data BLOB from byte
position 1001 to byte position 1100.
SUBBLOB(Data, 1001, 100)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-126

4.1.110. SUBBLOBTOBIN
The SUBBLOBTOBIN function returns a binary string derived from input blob,
beginning at the byte position specified by start for length bytes. The first byte of
BLOB is counted from 1. This function is an add-on; run the libblob.sql script
provided by DBMaker to install it. DBMaker uses the following rules to determine

the value returned if one of the expressions contains a NULL value or is zero.

 If blob is NULL the function returns a NULL value

 If start or length is NULL the function returns a string with the same data as blob

 If start < 0 or length < 0 the function returns a NULL value

 If start > length of blob the function returns a NULL value

 If length is 0 the function returns an empty string

blobBLOB (BLOB, CLOB, FILE) to extract partial data from

startInteger. Position to begin extracting the data of blob

lengthInteger. Number of characters to extract

Return valueBinary string. Data extracted from blob

Figure 4-110 SUBBLOBTOBIN syntax

 Example

A binary string with data extracted from the Data BLOB byte position 1001 to 1100.
SUBBLOBTOBIN(Data, 1001, 100)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-127

4.1.111. SUBBLOBTOCHAR
The SUBBLOBTOCHAR function returns a character string that is derived from the

input blob beginning at the byte position specified by start for length bytes. The first
byte of BLOB is counted from 1. This function is an add-on, run the libblob.sql
script provided by DBMaker to install it. DBMaker uses the following rules to

determine the value returned if one of the expressions contains a NULL value or is
zero.

 If blob is NULL the function returns a NULL value

 If start or length is NULL return the string, which is the same data as blob

 If start < 0 or length < 0 the function returns a NULL value

 If start > length of blob the function returns a NULL value

 If length is 0 the function returns an empty string

blob BLOB: BLOB, CLOB, FILE to extract partial data from

start Integer: Position to begin extracting the data of blob

length Integer: Number of characters to extract

Return value Character String: Data extracted from blob

SUBBLOBTOCHAR (string, start, length)

Figure 4-111 SUBBLOBTOCHAR syntax

 Example

A character string with data extracted from Data BLOB byte position 1001 to 1100.
SUBBLOBTOCHAR(Data, 1001, 100)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-128

4.1.112. SUBSTRING
The SUBSTRING function returns length characters beginning at start from string.

DBMaker uses the following rules to determine the value returned if one of the
expressions contains a NULL value or is zero.

 If string is NULL the function returns a NULL value

 If start or length is NULL the function returns string

 If start < 0 or length < 0 the function returns a NULL value

 If start > length of string the function returns a NULL value

 If length is 0 the function returns an empty string

stringString: String to extract a substring from

startInteger: Position to begin extracting the substring

lengthInteger: Number of characters to extract

Return valueString: Substring extracted from string

SUBSTRING

string, start, length

String

(

from start for length
)

Figure 4-112 SUBSTRING syntax

 Example 1

The following returns the string "morning".
SUBSTRING('Good morning!', 6, 7)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-129

 Example 2
dmSQL> SELECT SUBSTRING(CAST(123456 AS CHAR(10)) FROM LENGTH('abc') for
LENGTH('abc'));
SUBSTRING(CAST(123456 AS CHAR(10)
=================================
345

 Example 3
dmSQL> SELECT SUBSTRING('abcdef', 2, 2);

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-130

4.1.113. TAN
The TAN function returns the tangent of number, expressed in radians, as a double-

precision floating-point number.

 numberDouble: Number to find the tangent for

Return valueDouble: The tangent of number

Figure 4-113 TAN syntax

 Example

The following returns the value of 5.46302489843790e-001.
TAN(0.5)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-131

4.1.114. TANH
The TANH function returns the hyperbolic tangent of a number as a double precision

floating-point number expressed in radians.

Number Double: Number to find the hyperbolic tangent for

Return value Double: The hyperbolic tangent of Number

Figure 4-114 TANH syntax

 Example

The following returns the value of 4.62117157260010e-001.
TANH(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-132

4.1.115. TIMEPART
The TIMEPART function returns the time part of Timestamp.

timestampTimestamp: Timestamp to extract the time part from

Return valueTime: Time part of Timestamp

Figure 4-115 TIMEPART syntax

 Example

The following returns 10:11:12.
TIMEPART('1996-02-29 10:11:12.123')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-133

4.1.116. TIMESTAMPADD
The TIMESTAMPADD function returns the timestamp calculated by adding

Numbered Intervals to Timestamp.

IF INTERVAL UNIT INTERVAL

"f " (or SQL_TSI_FRAC_SECOND for ODBC
programs)

Fractions of a second

"s" (or SQL_TSI_SECOND for ODBC programs) Seconds

"m" (or SQL_TSI_MINUTE for ODBC programs) Minutes

"h" (or SQL_TSI_HOUR for ODBC programs) Hours

"D" (or SQL_TSI_DAY for ODBC programs) Days

"W" (or SQL_TSI_WEEK for ODBC programs) Weeks

"M" (or SQL_TSI_MONTH for ODBC programs) Months

"Q" (or SQL_TSI_QUARTER for ODBC programs) Quarters

"Y" (or SQL_TSI_YEAR for ODBC programs) Years

Table 4-1 TIMESTAMPADD NUMBERED INTERVAL table

interval String: Unit interval to add

number Integer: Number of unit intervals to add

timestamp Timestamp: Timestamp to add interval to

Return value Timestamp: Result of Timestamp + Interval × Number

Figure 4-116 TIMESTAMPADD syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-134

 Example

The following returns 1996-01-17 06:10:10.
TIMESTAMPADD('h',20,'1996-01-16 10:10:10')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-135

4.1.117. TIMESTAMPDIFF
The TIMESTAMPDIFF function returns the number of unit intervals between

timestamp2 and timestamp1.

IF INTERVAL UNIT INTERVAL
"f" (or SQL_TSI_FRAC_SECOND for ODBC programs) Fractions of a second
"s" (or SQL_TSI_SECOND for ODBC programs) Seconds
"m" (or SQL_TSI_MINUTE for ODBC programs) Minutes
"h" (or SQL_TSI_HOUR for ODBC programs) Hours
"D" (or SQL_TSI_DAY for ODBC programs) Days
"W" (or SQL_TSI_WEEK for ODBC programs) Weeks
"M" (or SQL_TSI_MONTH for ODBC programs) Months
"Q" (or SQL_TSI_QUARTER for ODBC programs) Quarters
"Y" (or SQL_TSI_YEAR for ODBC programs) Years

Table 4-2 TIMESTAMPDIFF NUMBERED INTERVAL table

interval String: Unit Interval to return the difference in

timestamp1 Timestamp: First Timestamp to find the interval between

timestamp2 Timestamp: Second Timestamp to find the Interval between

Return value Double: Result of Timestamp2 - Timestamp1

Figure 4-117 TIMESTAMPDIFF syntax

 Example

The following returns 2.40000000000000e+001.
TIMESTAMPDIFF('h','1996-01-16 10:10:10', '1996-01-17 10:10:10')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-136

4.1.118. TRIM
The TRIM function combines the LTRIM and RTRIM functions. More than one

character can be specified in the trim_char_value_expr and each character is viewed as
a valid trim character.

The default trim option is BOTH when at least one LEADING, TRAILING, or

BOTH options are not specified. The default trim_char_value_expr character is the
space character (' '). In addition, if the trim_char_value_expr were an empty string (''),
the resulting string would be trim_source string. If the trim_source is NULL, than the

result would also be NULL, no matter which trim option and trim character were
used. The LENGTH function can also be used with the TRIM function as shown in
some of the examples that follow.

leadingRemove trim_string from the front of trim_source

trailingRemove trim_string from the end of trim_source

bothremove trim_string from the front and end of trim_source

If none of these are chosen (i.e.: leading, trailing, both), the trim function will remove
trim_expr from both the front and end of trim_source.

trim_expr The character that will be removed from trim_source.

If this parameter is omitted, the trim function will remove all leading and trailing
spaces from trim_source.

trim_source...............The string to trim.

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-137

TRIM

FROM
LEADING
TRAILING

BOTH

trim_expr

()trim_source

Figure 4-118 TRIM function syntax

 Example 1
dmSQL> SELECT TRIM(both 'a' FROM 'aabcaa');
TRIM(BOTH 'A' FROM 'AABCAA')
==============================
bc

 Example 2
dmSQL> SELECT TRIM(FROM 'aabcaa');
TRIM(FROM 'AABCAA')
=====================
aabcaa

 Example 3
dmSQL> SELECT TRIM('a' FROM 'aabcaa');
TRIM('A' FROM 'AABCAA')
==========================
bc

 Example 4
dmSQL> SELECT TRIM('abc' FROM 'abckjkjjdcba');
TRIM('ABC' FROM 'ABCKJKJJDCBA')

===================================
kjkjjd

 Example 5
dmSQL> SELECT TRIM('a c' FROM 'ac ddbc');
TRIM ('A C' FROM 'AC DDBC')

==============================
ddb

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-138

 Example 6
dmSQL> SELECT LENGTH(TRIM(leading FROM ' abc '));

LENGTH(TRIM(LEADING FROM ' ABC '))
==
 3

 Example 7
dmSQL> SELECT LENGTH(TRIM(leading 'a' FROM 'aabc '));

LENGTH(TRIM(LEADING 'A' FROM 'AA'))
==
 2

 Example 8
dmSQL> SELECT LENGTH(TRIM(trailing FROM 'aabc '));

LENGTH(TRIM(TRAILING FROM 'AABC'))
===
 4

 Example 9
dmSQL> SELECT LENGTH(TRIM(trailing 'a' FROM 'aabcaa'));
LENGTH(TRIM(TRAILING 'A' FROM 'AABCAA'))
==
 4

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-139

4.1.119. UCASE
The UCASE function converts all lower case characters in string to uppercase. If the

string argument is NULL, a NULL value is returned. All arguments must be provided
otherwise an error is returned.

string String: Text to convert to upper case

Return value String: Text from the string argument in upper case

Figure 4-119 UCASE syntax

 Example 1

The following returns the string "ABCDEF".
UCASE('ABCdef')

 Example 2

The following returns the string "ABC123".
UCASE('abc123')

 Example 3

The following returns the string "ABC@#$".
UCASE('abc@#$')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-140

4.1.120. UPPER
This function performs the same calculation as UCASE. It capitalizes all characters in

the string. NULL string argument will return NULL.

String-expressionString: function change LOWER case into UPPER case

Return valueString: returns all characters in UPPER case

UPPER (string_expression)

Figure 4-120 UPPER function syntax

 Example
dmSQL> SELECT UPPER('abcdef');
UPPER('ABCDEF')
=================
ABCDEF

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-141

4.1.121. USER
The USER function returns the authorization name of the current user. The

authorization name of the user is also available by calling the SQLGetInfo with the
SQL_USER_NAME option.

Return value String: The name of the current user

Figure 4-121 USER syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-142

4.1.122. UTFConvert
The UTFConvert function is used to convert the character set between UTF-8 and

UTF-16. It contains two functions U8TOU16 and U16TOU8.

The UTFConvert function is in DBMaker's installation directory\shared\udf. It's not
created by default in the database. If users want to use it, they have to create it

manually.

To execute the following command to create these functions:
dmSQL> CREATE FUNCTION UTFConvert.U8TOU16(long varbinary) RETURNS nclob;
dmSQL> CREATE FUNCTION UTFConvert.U16TOU8(nclob) RETURNS long varbinary;

long varbinarythe UTF-8 content which will be converted to UTF-16

nclobthe UTF-16 content which will be converted to UTF-8

U8TOU16(long varbinary)

U16TOU8(nclob)

Figure 4-122 UTFConvert syntax

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-143

4.1.123. WEEK
The WEEK function returns the week date that falls in the integer value range from 1

to 53.

date Date: Date to find the week for

Return value Integer: The week that date falls in

Figure 4-123 WEEK syntax

 Example

2002-02-11 is in the 5th week of 2002, the following returns 5.
WEEK('2002-02-01')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-144

4.1.124. XLSTOTXT
The XLSTOTXT function can be used to convert excel document to a temporary

BLOB containing the pure text of blob as unicode.it will return temp blob or NULL.
In DBMaker current version, UDF will support office 2007- 2010 version.

blobColumn name on which to be converted to pure text

Return valuetemp blob as NCLOB type if blob can be converted to pure text.

COS (number)

 Figure4-124 Syntax for XLSTOTXT

 Example

The following will convert the column memo to puretext.
XLSTOTXT(memo)

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-145

4.1.125. XMLUPDATE
The xmlupdate function is using XPath to locate the part of xml data to be updated.

xmldata………………the XML content to be updated

xpath-expression……specifies the location of the xmldata to be updated

namespaces…………optionally specifies the namespace used in Xpath-expression

replace-content…… the value to replace the content located by Xpath

returnvalue…………the entire XML document after updating

XMLUPDATE(XMLdata, modification-type, xpath-expression,
namespaces, replace content)

Figure 4-125 XMLUPDATE syntax

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-146

4.1.126. YEAR
The YEAR function returns the year in date as an integer value in the range from 1 to

9999.

date..........................Date: Date to find the year component of

Return valueInteger: The year component of date

Figure 4-126 YEAR syntax

 Example

The following example illustratrates returning 2002.
YEAR('2002-02-01');

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-1

4.2 User-Defined Functions
DBMaker allows programmers to build their own user-defined functions (UDF).
Once a UDF has been written in DBMaker, it is treated as a new built-in DBMaker
function with the same usages.

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-2

4.2.1. AES_DECRYPT
The AES_ENCRYPT function is used to encrypt the data to safeguard the significant

data. Correspondingly, The AES_DECRYPT function is used to decrypt the
encrypted data to get the raw data.

The AES_DECRYPT function is in DBMaker's installation directory\shared\udf. It's
not created by default in the database. If users want to use it, they have to create it
manually, or run the SQL script located under the same directory.

To execute the following command to create these functions:
dmSQL> CREATE FUNCTION LIBCRYPT.AES_DECRYPT(BINARY(4096),STRING) RETURNS
BINARY(4096);

ciphertext the ciphertext

cipher key the inputed passphrase key

plaintext the raw data

(plaintext, ciphertext)cipher key , AES_DECRYPT

Figure 4-127 AES_DECRYPT syntax

The AES_DECRYPT function supports the following five data types: BINARY(N),

CHAR(N), VARCHAR(N), NCHAR(N), NVARCHAR(N). If the original data's
type is other types, ERROR (6536): [DBMaker] function arguments do not match
definition will be returned.

Encryption uses 16 byte alignment, which makes the string bigger. Note that the
original data's length must matches value of the defined UDF argument. Under
different environment, users should modify the parameter BINARY(n) to make sure

the length is big enough for the encrypted data. In addition, value of
AES_DECRYPT's parameter BINARY(n) must matches the value of the
AES_ENCRYPT's parameter BINARY(n).

 Example

Users can use the following syntax to run the AES_DECRYPT function.

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-3

dmSQL> SELECT AES_DECRYPT (Column, 'key') FROM table;

The following example decribes usage of the AES_DECRYPT function.
dmSQL> CREATE TABLE DAES(C1 BINARY(1024));
dmSQL> SELECT AES_DECRYPT (C1, 'key') FROM DAES; //the result' data type is
BINARY, and please cast the value;
dmSQL> SELECT CAST(AES_DECRYPT (C1, 'key') AS CHAR(200)) FROM DAES;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-4

4.2.2. AES_ENCRYPT
The AES_ENCRYPT function is used to encrypt the data to safeguard the significant

data.

The AES_ENCRYPT function is in DBMaker's installation directory\shared\udf. It's
not created by default in the database. If users want to use it, they have to create it

manually, or run the SQL script located under the same directory.

To execute the following command to create these functions:
dmSQL> CREATE FUNCTION LIBCRYPT.AES_ENCRYPT(BINARY(4096),STRING) RETURNS
BINARY(4096);

plaintext the raw data to be encrypted

cipher key the inputted passphrase key

ciphertext the ciphertext

(plaintext , ciphertext)cipher key , AES_ENCRYPT

Figure 4-128 AES_ENCRYPT syntax

The AES_ENCRYPT function supports the following five data types: BINARY(N),
CHAR(N), VARCHAR(N), NCHAR(N), NVARCHAR(N). If the original data's

type is other types, ERROR (6536): [DBMaker] function arguments do not match
definition will be returned.

Encryption will make the string bigger and 16 byte alignment. Note that the original

data's length must matches value of the defined UDF argument. Under different
environment, users should modify the parameter BINARY(n) to make sure the length
is big enough for the encrypted data. In addition, value of AES_DECRYPT's

parameter BINARY(n) must matches the value of the AES_ENCRYPT's parameter
BINARY(n).

 Example

Users can use the following syntax to run the AES_ENCRYPT function.
dmSQL> SELECT AES_ENCRYPT (Column, 'key') FROM table;

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-5

The following example decribes usage of the AES_ENCRYPT function.
dmSQL> CREATE TABLE AES(C1 CHAR(200));
dmSQL> INSERT INTO AES VALUES('abc');
dmSQL> SELECT AES_ENCRYPT (C1, 'key') FROM AES INTO DAES;

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-6

4.2.3. DATETOSTR
The DATETOSTR function is used to convert a value in DATE type into the

character string in specified format. The value in DATE type must be a valid date.

The DATETOSTR function is in DBMaker's installation directory\shared\udf. It's
not created by default in the database. If users want to use it, they have to create it

manually, or run the SQL script located under the same directory.

To execute the following command to create these functions:
dmSQL> CREATE FUNCTION datetostr.DATETOSTR(DATE, varchar(20)) RETURNS
varchar(20);

date...................................the date to be converted into a character string

date_format_string.............the format of the returned character string into which the
date is converted. Currently, the following 13 formats are
supported: mm/dd/yy, mm-dd-yy, dd/mon/yy, dd-mon-yy,

mm/dd/yyyy, mm-dd-yyyy, yyyy/mm/dd, yyyy-mm-dd,
dd/mon/yyyy, dd-mon-yyyy, dd.mm.yyyy, yyyy.mm.dd and
yyyymmdd. Additional, the format must be small letters.

Return valuethe character string into which the date is converted

DATETOSTR (date , date_ _ string)format

Figure 4-129 DATATOSTR syntax

 Example

The following will convert the date "2012-2-12" into the character string in
"mm/dd/yy" format.
DATETOSTR('2012-12-12','mm/dd/yy')

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-7

4.2.4. TIMETOSTR
The TIMETOSTR function is used to convert a value in TIME type into the

character string with specified format. The value in TIME type must be a valid time.

The TIMETOSTR function is in DBMaker's installation directory\shared\udf. It's not
created by default in the database. If users want to use it, they have to create it

manually, or run the SQL script located under the same directory.

To execute the following command to create these functions:
dmSQL> CREATE FUNCTION datetostr.TIMETOSTR(TIME, varchar(20)) RETURNS
varchar(20);

time...............................the time to be converted into a character string

time_format_string.........the format of the returned character string into which the
time is converted. Currently, the following 13 formats are
supported: hh:mm:ss.fff, hh:mm:ss, hh:mm, hh, hh:mm:ss.fff

tt, hh:mm:ss tt, hh:mm tt, hh tt, tt hh:mm:ss.fff, tt hh:mm:ss,
tt hh:mm, tt hh and hhmmss. Additional, the format must be
small letters.

Return value the character string into which the time is converted

TIMETOSTR (time , time_ _ string)format

Figure 4-130 TIMETOSTR syntax

 Example

The following will convert the time "12:10:10" into characters in "hh:mm:ss tt"

format.
TIMETOSTR('12:10:10','hh:mm:ss tt')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-8

4.2.5. TIMESTAMPTOSTR
The TIMESTAMPTOSTR function is used to convert a value in TIMESTAMP type

into the character string in specified format. The value in TIMESTAMP type must be
a valid date and time.

The TIMESTAMPTOSTR function is in DBMaker's installation directory\shared\udf.
It's not created by default in the database. If users want to use it, they have to create it
manually, or run the SQL script located under the same directory.

To execute the following command to create these functions:
dmSQL> CREATE FUNCTION datetostr.TIMESTAMPTOSTR(TIMESTAMP, varchar(20),
varchar(20)) RETURNS varchar(30);

timestamp..........................the date and time to be converted into a character string

date_format_string.............the format of the returned character string into which the
date is converted. Currently, the following 13 formats are

supported: mm/dd/yy, mm-dd-yy, dd/mon/yy, dd-mon-yy,
mm/dd/yyyy, mm-dd-yyyy, yyyy/mm/dd, yyyy-mm-dd,
dd/mon/yyyy, dd-mon-yyyy, dd.mm.yyyy, yyyy.mm.dd and

yyyymmdd. Additional, the format must be small letters.

time_format_stringthe format of the returned character string into which the
time is converted. Currently, the following 13 formats are

supported: hh:mm:ss.fff, hh:mm:ss, hh:mm, hh,
hh:mm:ss.fff tt, hh:mm:ss tt, hh:mm tt, hh tt, tt
hh:mm:ss.fff, tt hh:mm:ss, tt hh:mm, tt hh and hhmmss.

Additional, the format must be small letters.

Return value the character string into which the date and time is
converted

TIMESTAMPTOSTR (timestamp , time_ _ string)date_ _ string , format format

Figure 4-131 TIMESTAMPTOSTR syntax

1Functions 4

©Copyright 1995-2017 CASEMaker Inc. 4-9

 Example

The following will convert the date and time "2012-12-12 12:12:12" into the
character string in "mm/dd/yy" and "tt hh:mm:ss" format.
TIMESTAMPTOSTR('2012-12-12 12:12:12','mm/dd/yy' 'tt hh:mm:ss')

 SQL Command and Function Reference1

©Copyright 1995-2017 CASEMaker Inc. 4-10

4.2.6. TO_DATE
The TO_DATE function converts a selected character string to a DATE format. The

string may be of any data type, but must conform to a valid date when converted to a
date. The TO_DATE function consists of two parameters, char_string and
date_format_string. The char_string parameter represents the string that is to be

matched, while the date_format_string represents the format that the DATE type data
result set will take.

The TO_DATE UDF function is in DBMaker's installation directory\shared\udf, it's
not created by default in the database. If users want to use it, they have to create it
manually, or run the SQL script located under the same directory.

To execute the following command:
dmSQL> CREATE FUNCTION to_date.TO_DATE(varchar(20), varchar(20)) RETURNS DATE;

string_expr......................String expression from which the expression is matched

date_format_string...........The format that the date format should take. Use Y or y to
denote years, M or m to denote months, and D or d to

denote days. Use / or – to denote a separator.

Return value.....................The string expression returned as a DATE type data string.

 TO_ DATE (string_expr, date_ format_string)

Figure 4-132 TO_DATE syntax

 Example 1
TO_DATE('991031', 'YYMMDD')

 Example 2
dmSQL> SELECT TRIM(FROM 'aabcaa');
dmSQL> SELECT TO_DATE('2009-Jan-01', 'YYYY-mon-DD');

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-1

5 System-Stored
Procedures

System-Stored Procedures are dynamic library modules that are not be loaded until
called. System-stored procedures include shared objects and XML import and XML
export procedures.

A shared object is a signed integer variable existing in the database shared
memory (DCCA). The access of a shared object is more efficient and independent of
the transaction. Unlike data records, shared objects are not stored in a database file. As

a result, the lifecycle of the shared object ends when it is dropped or
the database is shut down.

Every user connected to the database can see the shared objects added by the

SYSADM. Users can set or get the shared object's values unless a lock has been placed
on them by another user. A shared object is a 4 byte signed integer. All users also have
equal rights and permissions to the shared objects, thus any user can override or reset

an objects' settings except for the lock permission.

The other two system-stored procedures (XMLEXPORT and XMLIMPORT) can
only be used by a SYSADM, a SYSDBA or a DBA to import and export xml files.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-2

5.1 APPENDBLOB
The APPENDBLOB system-stored procedure is used to insert a huge file into a
BLOB/CLOB/FILE type column piece by piece. It is built in the add-on executable
file. DBMaker doesn't initialize it when creating a database, so, before using it, users

need to declare it by running <DBMaker home installation directory> /shared/sp/
AppendBlob.sql.

For simplicity, without special note, we use BLOB type to represent the

BLOB/CLOB/FILE type in the following sections.

If no record or more than one record matches the condition specified by
WHERE_STR, an error will occur and a relevant error message will be returned.

If the cell specified by TABLE_NAME, COLUMN_NAME and WHERE_STR is
Null or its type is not BLOB, an error will occur and a relevant error message will be
returned.

The maximum size of DATA_BUFF is 10M bytes, so if the value of DATA_BUFF or
DATA_LEN is bigger than 10485760, an error will occur and a relevant error
message will be returned.

 The prototype for APPENDBLOB is:
APPENDBLOB(VARCHAR(128) TABLE_NAME INPUT,

VARCHAR(128) COLUMN_NAME INPUT,
VARCHAR(2048) WHERE_STR INPUT,
BINARY(10485760) DATA_BUFF INPUT,
INTEGER DATA_LEN INPUT)

table_name................the name of the table which contains BLOB type column

column_name.............the name of the BLOB type column to which the new data will
be appended

where_str....................the condition string used to specify the single row

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-3

data_buff...................the data in the buffer will be appended to on the BLOB type
column specified by TABLE_NAME, COLUMN_NAME and
WHERE_STR.

data_len.....................the length of the valid data in DATA_BUFF. Its unit is Byte. If
it is less than the DATA_BUFF's length, DBMaker appends
only the data with the length DATA_LEN, or else, appends the

whole buffer.

 Example

Firstly, create a database named bbsp, and then declare the stored procedure
APPENDBLOB.
dmSQL> CREATE DB bbsp;
USE db #1 connected to db:<bbsp> by user:<SYSADM>
dmSQL> RUN 'C:\DBMaker\5.4\shared\sp\AppendBlob.sql';

Create a table named test_blob1, and then insert a record.
dmSQL> CREATE TABLE test_blob1(c1 INT,c2 BLOB);
dmSQL> INSERT INTO test_blob1 VALUES(1,?);
dmSQL/Val> &file1;
1 rows inserted
dmSQL/Val> END;
dmSQL> SELECT c1,BLOBLEN(c2) FROM test_blob1;
 C1 BLOBLEN(C2)
=========== =============

 1 81920
1 rows selected

Call the stored procedure APPENDBLOB to append more data to the BLOB.
dmSQL> CALL APPENDBLOB('test_blob1','c2','c1=1',?,10);
dmSQL/Val> 'xxxxxyyyyy';
dmSQL/Val> END;
dmSQL> SELECT c1,BLOBLEN(c2) FROM test_blob1;
 C1 BLOBLEN(C2)
=========== =============
 1 81930
1 rows selected

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-4

5.2 APPENDBLOBBYOID
The APPENDBLOBBYOID system-stored procedure is used to insert a huge file
piece by piece.It has the same usage as the APPENDBLOB system-stored procedure.
It is also built in the add-on executable file and users also need to declare it before

using.

If DBMaker cannot find a row through ROW_ID, an error will occur and a relevant
error message will be returned.

If the cell specified by ROW_ID and COLUMN_ORDER is Null or its type is
neither BLOB nor FILE, an error will occur and a relevant error message will be
returned.

The maximum size of DATA_BUFF is 10M bytes, so if the value of DATA_BUFF or
DATA_LEN is bigger than 10485760, an error will occur and a relevant error
message will be returned.

 The prototype for APPENDBLOBBYOID is:
APPENDBLOBBYOID(BINARY(16) ROW_ID INPUT,

INT COLUMN_ORDER INPUT,
BINARY(10485760) DATA_BUFF INPUT,
INT DATA_LEN INPUT)

row_id_inputid of the row which contains BLOB type columns

column_order..............the order number of the BLOB type column to which the new
data will be appended

data_buff...................the data in the buffer will be appended to the BLOB type

column specified by ROW_ID and COLUMN_ORDER.

data_len.....................the length of the valid data in DATA_BUFF. Its unit is Byte.
Ifit is less than the DATA_BUFF's length, DBMaker appends

only the data with the length DATA_LEN, or else, appends the
whole buffer.

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-5

 Example

Create a table named test_blob2, and then insert a record.
dmSQL> CREATE TABLE test_blob2(c1 INT,c2 BLOB);
dmSQL> INSERT INTO test_blob2 VALUES(1,?);
dmSQL/Val> &file1;
1 rows inserted
dmSQL/Val> END;
dmSQL> SET AUTOMIT OFF;
dmSQL> COMMIT;
1 rows selected
dmSQL> SELECT oid,c1,BLOBLEN(c2) FROM test_blob2;
 OID C1 BLOBLEN(C2)
================================ =========== ===========
03000000020000000000000000000000 1 81920
1 rows selected
dmSQL> SELECT column_order FROM system.syscolumn WHERE table_name = 'TEST_BLOB2'
 AND column_name = 'C2';
COLUMN_ORDER
============

2
1 rows selected

Call the stored procedure APPENDBLOBBYOID to append more data to the file1.
dmSQL> CALL APPENDBLOBBYOID('03000000020000000000000000000000'x,2,?,15);
dmSQL/Val> 'xxxxxyyyyyzzzzz';
dmSQL/Val> END;
dmSQL> COMMIT;
dmSQL> SELECT c1,BLOBLEN(c2) FROM test_blob2;
 C1 BLOBLEN(C2)
=========== ===========
 1 81935
1 rows selected

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-6

5.3 COPYTABLE
The COPYTABLE system-stored procedure is used to copy one table's definition and
data into another table. The source table's index, table and column constraints,
triggers, and data are copied to the destination table.

The COPYTABLE stored procedure must be run when autocommit mode is on. An
error is returned when the destination table already exists. If the rename index flag is
set to 1, then the index name is renamed to the new table name if it's prefixed by the

table name. If a user sets the commit count, a command is issued to commit when
copying every nth data into the destination table.

When an error occurs, operations executed prior to the error are committed. The

commands that did not execute for COPYTABLE are recorded in the _spusr.log.
Users can set the DB_SPLog directory in dmconfig.ini or find it in the directory
where the user executes the application.

 The prototype for COPYTABLE is:
COPYTABLE(VARCHAR(32) source_schema_name INPUT,

VARCHAR(32) source_table_name INPUT,
 VARCHAR(32) destination_schema_name INPUT,
 VARCHAR(32) destination_table_name INPUT,
 VARCHAR(128) tablespace_lock_mode_option_string INPUT,
 VARCHAR(2048) where_condition_string INPUT,
 INT fg_rename_index INPUT,
 INT commit_count INPUT)

schema_name.............The schema name of the table represents the default current user

when specified as NULL or an empty string.

table_nameThe name of the source or destination table.

tablespace_lock_mode_option_string... Specified in the IN tablespace or lock mode

syntax as in the created table in the string. The
identifier specified in the string must follow the
SQL syntax rule.

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-7

where_condition_string…Specified in the where condition as the SELECT statement
in the string. The identifier specified in the string must
follow the SQL syntax rule.

fg_rename_index This flag indicates whether to rename the index to be
prefixed by new_table_name if the source index name is
prefixed by the table name. The valid values are 0 or 1.

commit_count Commit after every nth record is inserted. The valid value
range is 0 to n.

 Example

The following syntax copies the Scores table to table Scores70 in a different
tablespace, where the Math score > 70. It does not rename the index. It commits after

every 10 records.
dmSQL> CALL COPYTABLE('SYSADM', 'Scores', 'SYSADM', 'Scores70', 'in tablespace1',
'Math > 70', 0, 10);

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-8

5.4 GETCPUNUMBER
The GETCPUNUMBER system-stored procedure is used to get the number of
logical processors in the machine.

Using GETCPUNUMBER and SETAFFINITY system stored procedures, user can

get the current system state and set a connection's CPU affinity without restarting
DBMaker during runtime.

 The prototype for GETCPUNUMBER is:
GETCPUNUMBER (INT CPU_NUMBER OUTPUT)

cpu_number ……output parameter, the number of logical processors in the machine

 Example

The following syntax gets the number of CPU by calling GETCPUNUMBER:
dmSQL> CALL GETCPUNUMBER(?);

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-9

5.5 GETSYSTEMOPTION
The GetSystemOption system-stored procedure is used to get the system option value
during run time. That is to say, user can use GetSystemOption stored procedure to get
all validsystem option values during the database running.

The following table lists all of the option_name system option values that obtained by
calling the system-stored procedure GetSystemOption, and a brief description of what
keyword is contained in each option_name. For more details of related keywords,

please refer to Database Administrator's Guide.

OPTION_NAME DESCRIPTION
FODIR The system file object directory (DB_FoDir)
LGSVR Server log level (DB_LgSvr)
LGERR Server log error level (DB_LgErr)
LGSTM Server log statment execution time over n secs

(DB_LgSTm)
LGSYS Server log the system info (DB_LgSys)
LGFSZ Server log file size (DB_LgFSz)
LGFNO Server log file number (DB_LgFNo)
LGSQL Server log the sql command (DB_LgSQL)
LGPLN Server log the execution plan (DB_LgPLn)
LGPAR Server log the input parameter value (DB_LgPar)
LGLCK Server log extra lock time out informatin when it exceed

error argument's length (DB_LgLck)
LGDIR Server log directory (DB_LgDir)
LGDAY The number of days to keep server log files (DB_LgDay)
LGZIP Zip closed log files (DB_LgZip)
BKCHK Whether check database before full backup and

differential backup (DB_ BkChk)
BKCMP The compact backup mode (DB_BkCmp)
BKDIR Directory to store backup journal files (DB_BkDir)

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-10

BKFOM The file object (FO) backup mode (DB_BkFoM)
BKFRM The format Backup Server used to name incremental

backup journal files (DB_BkFrm)
BKFUL The percentage full of the journal files that triggers the

backup server to perform an incremental backup
(DB_BkFul)

BKITV The backup time interval (DB_BkItv)
BKODR The directories where the backup server puts the previous

version of full backup files (DB_ BkOdr)
BKRTS Whether the backup server includes the read-only

tablespace files when performing a full-backup
(DB_BkRTs)

BKSPM The store procedure(SP) backup mode(DB_BkSPm)
BKSVR Whether a backup server is activated (DB_BkSvr)
BKTIM The first time a backup server performs an incremental

backup (DB_BkTim)
BKZIP Whether the backup files are compressed by a backup

server when performing full backups (DB_BkZip)
CTBLM The default lock mode used when creating a table

(DB_CTbLM)
DBKMX The maximum number of differential backup after a full

backup (DB_DbKmx)
DBKTV The differential backup time interval (DB_DbKtv)
DBNAME The database name of current connection
DDBMD Whether the DDB (Distributed DataBase) function is

enabled on the database server (DD_DDBMd)

EATRPT The database server's Subscriber Daemon TCP/IP port
number (DB_EtrPt)

EXTNP A size for DBMaker to extend autoextend tablespace
(DB_ExtNp)

FBKTM The first time the Backup Server will perform a full
backup (DB_FBkTm)

FBKTV The full backup time interval (DB_FBkTv)

FOSUB The maximum number of file objects that may be stored

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-11

in each system file object subdirectory (DB_FoSub)

FULLBKID The full backup id

IDXDP Auto drop index threshold for auto index daemon
(DB_IdxDp)

IDXLN Auto create index threshold for auto index daemon
(DB_IdxLn)

IDXTM The start time for auto index daemon (DB_IdxTm)

IDXTV The auto index daemon interval (DB_IdxTv)

IDXSV Activate auto index daemon (DB_IdxSv)

ISOLV The default transaction isolation level when a user
connects to the database (DB_ISOLV)

LETPT

The Lock Escalation Threshold for escalating a page lock
to a table lock (DB_LetPT)

LETRP The Lock Escalation Threshold for an escalating rowlock
to a page lock (DB_LetRP)

LIC_ACL Access Control List

LIC_BKSERVER Backup Server

LIC_DBREP Database Replication

LIC_DCI Database Cobol Interface

LIC_DDB Distributed Database

LIC_EDITION Edition

LIC_EXPIREDATE License Expiration Date

LIC_FREETRIAL Free Trial Period

LIC_FULLTEXT FullText Indexing

LIC_HOSTCONN Host Connection

LIC_IOSERVER IO Server

LIC_LOCALE Locale Language

LIC_MAXCONN Max Connection

LIC_MAXDBSIZE Max Database Size

LIC_MAXJNFSZ Max Journal File Size

LIC_MAXPGSIZE Max Page Size

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-12

LIC_NETZC Network Compression

LIC_PLATFORM Platform

LIC_PRODUCT Product Name

LIC_SERIALID Serial ID

LIC_STARTDATE License Start Date

LIC_UPGRADE Upgradable

LIC_USERINFO User Information

LIC_VERSION Version

SQLST The display mode of the SQL command monitor
(DB_SQLSt)

STARTBACKUP Option to act backup server to process full or incremental
backup

STSVR Start update statistics daemon (DB_StSvr)

STMOD The incremental update statistics mode for a database
(DB_StMod)

STSTM The start time for update statistics (DB_StsTm)

STSTV The update statistics daemon interval (DB_StsTv)

STSSP The update statistics sample (DB_StsSP)

USRFO User file objects can be inserted in a database
(DB_UsrFo)

 The prototype for GETSYSTEMOPTION is:
GETSYSTEMOPTION('optionName', ?)

optionName……system option name.

 Example 1

The following syntax gets option value of backup server:
dmSQL> CALL GETSYSTEMOPTION('BKSVR',?);

 Example 2

The following syntax gets option value of database expired date:
dmSQL> CALL GETSYSTEMOPTION('LIC_EXPIREDATE',?);

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-13

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-14

5.6 SCHEDULE_ALTER
The SCHEDULE_ALTER system-stored procedure is used to alter an existing
schedule.

Except for SCHEDULE_NAME, all schedule parameters can be altered. If a

parameter of a schedule is altered while the task is running, dmschsvr will load and use
the new parameters of this schedule when the task runs next time according to users'
schedule.

 The prototype for SCHEDULE_ALTER is:
SCHEDULE_ALTER(VARCHAR(128) SCHEDULE_NAME INPUT,
 VARCHAR(128) TASK_NAME INPUT,
 VARCHAR(512) TIMETABLE INPUT,
 VARCHAR(32) STARTTIME INPUT,
 VARCHAR(32) ENDTIME INPUT)

schedule_namethe name of the existing schedule to alter

task_name..................the name of the task involved into the schedule

starttime.....................the date and time when the schedule starts; its format is yyyy-
mm-dd hh:mm:ss.

Endtime.....................the date and time when the schedule expires; its format is yyyy-
mm-dd hh:mm:ss. Because the minimum time unit of scheduel
daemon is minutes, so end time must be later than start time by

at least one minute. Please note that, usually users must set
endtime, but if value of timetable is set to @once or @once m n,
it is allowed for users not to set endtime, and under this

situation, system will automatically regard the time later than
start time by one minute and (m*n+1) minutes as the end time
respectively.

Timetable...................the timetable of the task's execution; it is composed of fivefields
in sequence: minute, hour, day-of-month, month, day-of-week,
and the five fields should be separated by a space. Their value's

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-15

range are 0–59, 0–23, 1-31, 1–12 and 0–7 respectively and all
values can be replaced with the following wildcard: asterisk (*),
comma (,), hyphen (-) and slash (/). Details are as follows.

-Asterisk (*)

It's valid to specify a * to represent all possible values for a position, e.g. a * on 2nd
position is same as specifying all the possible values for hour.

-Comma (,)

It's valid to specify several values separated by commas, e.g. if a user want a command
to be executed every 10th minute, he can specify 0,10,20,30,40,50 for minute.

-Hyphen (-)

It's valid to specify the range of a value with a -, e.g. a user can specify 0-12 for hour to
represent every hour a.m.

-slash (/)

It's valid to specify a regular interval with a /, e.g. a user can specify */3 for minute to
represent every 3 minutes.

For convenience, some simple and specific characters are set as valid value for
TIMETABLE. Details are as follows.

CHARACTER DESCRIPTION
@MINUTE the first second of every minute

@HOURLY the first minute of every hour

@MIDNIGHT the first minute of every day

@DAILY the first minute of every day

@WEEKLY the first minute of every Monday

@MONTHLY the first minute of the 1st of every month

@ONCE This task will be executed only once, whether it is executed
successfully or not. The starting time is specified by
STARTTIME; if STARTTIME is 'now()', this task will be
exected at next minute.

@ONCE M N This task will be executed sccussfully only once. If fail, this task

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-16

will be executed once every n minutes until a success, and this
kind of attempts can be done at most m times. m' range is 1 ~
525600; n's range is 1 ~ 1440.

Table 5-1 Valid Special Characters table

 Example

The following syntax is used to alter schedule insert_into_t1. In this example, alter

the execution plan "10 0,1 * * *" to "20 2,3 * * *". For more information of schedule
insert_into_t1, please refer to the example in Chapter 5.7, SCHEDULE_CREATE.
dmSQL> CALL SCHEDULE_ALTER('insert_into_t1', 'insert_t1', '20 2,3 * * *', '2012-
12-12 12:00:00', '2015-12-12 12:00:00'); // The task 'insert_t1' will run at 2:20
and 3:20 every day from 2012-12-12 12:00 to 2015-12-12 12:00.

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-17

5.7 SCHEDULE_CREATE
The SCHEDULE_CREATE system-stored procedure is used to create a schedule.

 The prototype for SCHEDULE_CREATE is:
SCHEDULE_CREATE(VARCHAR(128) SCHEDULE_NAME INPUT,

VARCHAR(128) TASK_NAME INPUT,
VARCHAR(512) TIMETABLE INPUT,
VARCHAR(32) STARTTIME INPUT,
VARCHAR(32) ENDTIME INPUT)

schedule_name……the name of the schedule to create. It can contains 1 to 128
letters, numbers, and underscores, but the first character cannot be numbers.

task_name the name of the task involved into the schedule

starttime.......................the date and time when the schedule starts; its format is yyyy-
mm-dd hh:mm:ss.

Endtime.......................the date and time when the schedule expires; its format is yyyy-

mm-dd hh:mm:ss. Because the minimum time unit of
scheduel daemon is minutes, so end time must be later than
start time by at least one minute. Please note that, usually users

must set endtime, but if value of timetable is set to @once or
@once m n, it is allowed for users not to set endtime, and
under this situation, system will automatically regard the time

later than start time by one minute and (m*n+1) minutes as
the end time respectively.

Timetable.....................the timetale of the task's execution; it is composed of five fields

in sequence: minute, hour, day-of-month, month, day-of-
week, and the five fields should be separated by a space. Their
value's range are 0–59, 0–23, 1-31, 1–12 and 0–7 respectively

and all values can be replaced with the following wildcard:
asterisk (*), comma (,), hyphen (-) and slash (/). Details are as
follows.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-18

-Asterisk (*)

It's valid to specify a * to represent all possible values for a position, e.g. A * on 2nd
position is same as specifying all the possible values for hour.

-Comma (,)

It's valid to specify several values separated by commas, e.g. If a user want a command
to be executed every 10th minute, he can specify 0,10,20,30,40,50 for minute.

-Hyphen (-)

It's valid to specify the range of a value with a -, e.g. A user can specify 0-12 for hour
to represent every hour a.m.

-slash (/)

It's valid to specify a regular interval with a /, e.g. A user can specify */3 for minute to
represent every 3 minutes.

For convenience, some simple and specific characters are set as valid value for
TIMETABLE. Details are as follows.

CHARACTER DESCRIPTION
@MINUTE the first second of every minute

@HOURLY the first minute of every hour

@MIDNIGHT the first minute of every day

@DAILY the first minute of every day

@WEEKLY the first minute of every Monday

@MONTHLY the first minute of the 1st of every month

@ONCE This task will be executed only once, whether it is executed
successfully or not. The starting time is specified by
STARTTIME; if STARTTIME is 'now()', this task will be
exected immediately.

@ONCE M N This task will be executed sccussfully only once. If fail, this task
will be executed once every n minutes until a success, and this
kind of attemps can be done at most m times. m' range is 1 ~
525600; n's range is 1 ~ 1440.

Table 5-2 Valid Special Characters table

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-19

 Example

The following syntax is used to create a schedule named insert_into_t1 for task
insert_t1. For more information of task insert t1, please refer to the example in
Chapter 5.27, TASK_CREATE.
dmSQL> CALL SCHEDULE_CREATE('insert_into_t1', 'insert_t1', '10 0,1 * * *', '2012-
12-12 12:00:00', '2015-12-12 12:00:00'); // The task 'insert_t1' will run at 0:10
and 1:10 every day from 2012-12-12 12:00 to 2015-12-12 12:00.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-20

5.8 SCHEDULE_DISABLE
The SCHEDULE_DISABLE system-stored procedure is used to disable a schedule.

Disabling a schedule means that, although the metadata of the schedule is there, it
should not run and dmschsvr will not load the schedule for processing. When a

schedule is disabled, its state in the system table is changed to disabled. A newly
created schedule, except a one-off one, is disabled by default.

 The prototype for SCHEDULE_DISABLE is:
SCHEDULE_DISABLE(VARCHAR(128) SCHEDULE_NAME INPUT)

schedule_name……the name of the schedule to disable

 Example

The following syntax is used to disable schedule insert_into_t1. For more information
of schedule insert_into_t1, please refer to the example in Chapter 5.7,

SCHEDULE_CREATE.
dmSQL> CALL SCHEDULE_DISABLE('insert_into_t1');

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-21

5.9 SCHEDULE_DROP
The SCHEDULE_DROP system-stored procedure is used to delete an existing
schedule. If a schedule is dropped, the record about it stored in SYSSCHEDULE also
is dropped.

 The prototype for SCHEDULE_DROP is:
SCHEDULE_DROP(VARCHAR(128) SCHEDULE_NAME INPUT)

schedule_name the name of the schedule to delete

 Example

The following syntax is used to delete schedule insert_into_t1. For more information

of schedule insert_into_t1, please refer to the example in Chapter 5.7,
SCHEDULE_CREATE.
dmSQL> CALL SCHEDULE_DROP('insert_into_t1');

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-22

5.10 SCHEDULE_ENABLE
The SCHEDULE_ENABLE system-stored procedure is used to enable a schedule.

The effect of using this procedure is that the schedule will now be loaded by dmschsvr
for processing. Usually a newly created schedule is disabled by default, so users need to

enable it before running it.

 The prototype for SCHEDULE_ENABLE is:
SCHEDULE_ENABLE(VARCHAR(128) SCHEDULE_NAME INPUT)

schedule_name……the name of the schedule to enable

 Example

The following syntax is used to ensable schedule insert_into_t1. For more
information of schedule insert_into_t1, please refer to the example in Chapter 5.7,
SCHEDULE_CREATE.
dmSQL> CALL SCHEDULE_ENABLE('insert_into_t1');

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-23

5.11 SCHEDULE_RELOAD
The SCHEDULE_RELOAD system-stored procedure is used to reload all enabled
schedules into system. Dmschsvr automatically check whether there are altered or
newly created schedule every minute, and if find some, reload all enabled schedules.

 The prototype for SCHEDULE_RELOAD is:
SCHEDULE_RELOAD

 Example

The following syntax is used to reload all enabled schedules into system.
dmSQL> CALL SCHEDULE_RELOAD;

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-24

5.12 SCHELOG_CLEAN
The SCHELOG_CLEAN system-stored procedure is used to clean excessive logs and
only keep logs of recently days. Only a user with DBA authority or higher can call it.

 The prototype for SCHELOG_CLEAN is:
SCHELOG_CLEAN(INT RESERVE_DAY INPUT)

reserve_day...................the number of days between creation time of schedule logs to
delete and that of the most recent schedule logs. Schedule logs

are stored in SYSSCHELOG, and the range of this value is 0 ~
7300

 Example

A user's the most recent logs are created 10 days ago, and the following syntax is used
to clean logs of which creation is earlier than the most recent logs by 20 days, namely

logs created 30 days ago.
dmSQL> CALL SCHELOG_CLEAN(20);

(20years).

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-25

5.13 SETAFFINITY
The SETAFFINITY system-stored procedure is used to set CPU affinity of processes
and threads. Please note that only SYSADM can call the SETAFFINITY system-
stored procedure.

Using GETCPUNUMBER and SETAFFINITY system-stored procedures, user can
get the current system state and set a connection's CPU affinity without restarting
DBMaker during runtime.

CPU affinity is difined by affinity mask in which each bit represents one processor.
DBMaker define affinity mask as char(64), so it most set 64 CPU.

 The prototype for SETAFFINITY is:
SETAFFINITY(INT CONNECTION_ID INPUT,

 CHAR(64) AFFINITY_MASK INPUT)

connection_id…………input parameter, the ID of connections or servers. Users can
get it with "select connection_id from sysuser" or checking

system monitor. It is thread's ID in windows and process ID in
Unix-like system.

affinity_mask................input parameter, CPU affinity mask. The valid affinity mask is

composed of '1' or '0'. '1' means the CPU is valid for
connection; '0' means the CPU is invalid for connection.

 Example 1

There are affinity mask values for an 8-CPU system. (The continuous zeros in high
position are omitted.)

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-26

 Example 2

Users must get some system information before setting CPU affinity, such as the
number of CPU on the server, the CPU usage of every connection, correct affinity
mask.

Get the number of CPU by calling GETCPUNUMBER:
dmSQL> CALL GETCPUNUMBER(?);

Get the CPU usage of every connection, correct affinity mask:
dmSQL> SELECT connection_id, affinity_mask, priority_level, cpu_usage FROM
sysuser;

Set CPU affinity and allow the connection running on CPU 0 and 1:
dmSQL> SELECT connection_id, user_name FROM sysuser;

 CONNECT* USER_NAME
================ ========================
 30420 BACKUP_SERVER
 30418 SYSADM

2 rows selected
dmSQL> CALL SETAFFINITY(30418,'11');

Get CPU affinity mask by querying sysuser for a precise connection:
dmSQL> SELECT affinity_mask FROM sysuser WHERE connection_id = ?;

Decimal value Binary bit mask Allow run on CPU
1 '1' 0
3 '11' 0 and 1
7 '111' 0, 1 and 2
15 '1111' 0, 1, 2 and 3
31 '11111' 0, 1, 2, 3 and 4
63 '111111' 0, 1, 2, 3, 4 and 5
127 '1111111' 0, 1, 2, 3, 4, 5 and 6
255 '11111111' 0, 1, 2, 3, 4, 5, 6 and 7

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-27

5.14 SETPRIORITY
The SETPRIORITY system-stored procedure is used to set the priority of processes
and threads. Please note that only sysadm can call the PRIORITY system-stored
procedure.

Using the SETPRIORITY system-stored procedure, users can set a connection's
priority without restarting DBMaker during runtime. Please note that user can't set a
higher priority on Linux because it need root privilege. So you can only set lower level

on Linux, but there are no limits on Windows.

 The prototype for SETPRIORITY is:
SETPRIORITY(INT CONNECTION_ID INPUT,
 INT PRIORITY_LEVEL INPUT)

connection_id……..….input parameter, the ID of connections or servers. Users can
get it with "select connection_id from sysuser" or checking
system monitor. It is thread's ID in windows and process ID in

Unix-like system.

priority_level…………input parameter, there are five levels, the normal and default
priority level is three. Valid priority levels are '1', '2', '3', '4'

and '5'. '1' means lowest priority; '2' means lower priority; '3'
means normal priority; '4' means higher priority; '5' means
highest priority.

 Example

Users must get some system information before setting priority, such as the number of

CPU on the server, the CPU usage of every connection, the priority.

To get the number of CPU by calling GETCPUNUMBER:
dmSQL> CALL GETCPUNUMBER(?);

To get the CPU usage of every connection, the priority:
dmSQL> SELECT connection_id, affinity_mask, priority_level, cpu_usage FROM
sysuser;

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-28

To set priority level：
dmSQL> SELECT connection_id , user_name FROM sysuser;

 CONNECT* USER_NAME
================ ========================
 30420 BACKUP_SERVER
 30418 SYSADM

2 rows selected
dmSQL> CALL SETPRIORITY(30418,3);

To get the priority level by querying sysuser for a precise connection:
dmSQL> SELECT priority_level FROM sysuser WHERE connection_id = ?;

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-29

5.15 SETSYSTEMOPTION
The SetSystemOption system-stored procedure is used to set system option during run
time, that is to say, these validsystem option values can be changed during the run
time with the SetSystemOption system stored procedure and call GetSystemOption to

get the value of system option.

The following table lists all of the option_name system option values that obtained by
calling the system-stored procedure SetSystemOption, and a brief description of what

keyword is contained in each option_name. For more details of related keywords,
please refer to Database Administrator's Guide.

OPTION_NAME DESCRIPTION
FODIR On-line change the system file object directory (DB_FoDir).

option_name is the new full path. Empty string, i.e. ' ', disables
the feature of the system file object.

LGSVR Server log level (DB_LgSvr)
LGERR Server log error level (DB_LgErr)
LGSTM Server log statment execution time over n secs (DB_LgSTm)
LGSYS Server log the system info (DB_LgSys)
LGFSZ Server log file size (DB_LgFSz)
LGFNO Server log file number (DB_LgFNo)
LGSQL Server log the sql command (DB_LgSQL)
LGPLN Server log the execution plan (DB_LgPLn)
LGPAR Server log the input parameter value (DB_LgPar)
LGLCK Server log extra lock time out informatin when it exceed

error argument's length (DB_LgLck)
LGDIR Server log directory (DB_LgDir)
LGDAY The number of days to keep server log files (DB_LgDay)
LGZIP Zip closed log files (DB_LgZip)
BKCHK Whether check database before full backup and differential

backup (DB_ BkChk)

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-30

BKCMP The compact backup mode (DB_BkCmp)
BKDIR Directory to store backup journal files (DB_BkDir)
BKFOM The file object (FO) backup mode (DB_BkFoM)
BKFRM The format Backup Server used to name incremental backup

journal files (DB_BkFrm)
BKFUL The percentage full of the journal files that triggers the

backup server to perform an incremental backup (DB_BkFul)
BKITV The backup time interval (DB_BkItv)
BKODR The directories where the backup server puts the previous

version of full backup files (DB_ BkOdr)
BKRTS Whether the backup server includes the read-only tablespace

files when performing a full-backup (DB_BkRTs)
BKSPM The store procedure(SP) backup mode(DB_BkSPm)
BKSVR whether a backup server is activated (DB_BkSvr)
BKTIM The first time a backup server performs an incremental

backup (DB_BkTim)
BKZIP Whether the backup files are compressed by a backup server

when performing full backups (DB_BkZip)
CTBLM The default lock mode used when creating a table

(DB_CTbLM)
DBKMX The maximum number of differential backup after a full

backup (DB_DbKmx)
DBKTV The differential backup time interval (DB_DbKtv)
DDBMD whether the DDB (Distributed DataBase) function is enabled

on the database server (DD_DDBMd)

EXTNP A size for DBMaker to extend autoextend tablespace
(DB_ExtNp)

FBKTM The first time the Backup Server will perform a full
backup (DB_FBkTm)

FBKTV The full backup time interval (DB_FBkTv)

FOSUB The maximum number of file objects that may be stored in
each system file object subdirectory (DB_FoSub)

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-31

IDXDP Auto drop index threshold for auto index daemon
(DB_IdxDp)

IDXLN Auto create index threshold for auto index daemon
(DB_IdxLn)

IDXTM The start time for auto index daemon (DB_IdxTm)

IDXTV The auto index daemon interval (DB_IdxTv)

IDXSV Activate auto index daemon (DB_IdxSv)

LETPT

The Lock Escalation Threshold for escalating a page lock
to a table lock (DB_LetPT)

LETRP The Lock Escalation Threshold for an escalating rowlock to
a page lock (DB_LetRP)

LIC_RELOAD Reload License

SQLST The display mode of the SQL command monitor
(DB_SQLSt)

STSVR Start update statistics daemon (DB_StSvr)

STMOD The incremental update statistics mode for a database
(DB_StMod)

STSTM The start time for update statistics (DB_StsTm)

STSTV The update statistics daemon interval (DB_StsTv)

STSSP The update statistics sample (DB_StsSP)

STS_ABORT Abort ongoing update statistics

USRFO User file objects can be inserted in a database (DB_UsrFo)

 The prototype for SETSYSTEMOPTION is:
SETSYSTEMOPTION(VARCHAR(32) OPTION_NAME INPUT,
 VARCHAR(8576) OPTION_VALUE INPUT)

option_name the name of the system option

option_value the value of the system option

 Example 1

The following syntax is used to activate the Backup Server.
dmSQL> CALL SETSYSTEMOPTION('BKSVR','1');

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-32

 Example 2

When Backup Server is activated, the following syntax is used to set the appropriate
backup parameters in the dmconfig.ini configuration file.
dmSQL> CALL SETSYSTEMOPTION('STARTBACKUP','1'); //do full backup
dmSQL> CALL SETSYSTEMOPTION('STARTBACKUP','2'); //do incremential backup
dmSQL> CALL SETSYSTEMOPTION('STARTBACKUP','3'); //do differential backup

 Example 3

The following syntax is used to set update statistics sample to 60 during run time.
dmSQL> CALL SETSYSTEMOPTION('STSSP', '60');

 Example 4

The following syntax is used to abort an ongoing update statistics.
dmSQL> CALL SETSYSTEMOPTION('STS_ABORT', '14076'); // abort an ongoing update
statistics which connection ID is 14076.
dmSQL> CALL SETSYSTEMOPTION('STS_ABORT', '0'); // the value 0 is a special
connection ID.It means abort all command related to update statistics.

 Example 5

The following syntax is used to activate an auto index daemon.
dmSQL> CALL SETSYSTEMOPTION ('IDXSV', '1');

 Example 6

After Auto Index Daemon is activated, the following syntax is used to set the
appropriate auto index daemon parameters in the dmconfig.ini configuration file.
dmSQL> CALL SETSYSTEMOPTION('IDXTM', '2012-12-12 00:00:00'); // The first time
the auto index daemon starts for the first time at 2012-12-12 00:00:00.
dmSQL> CALL SETSYSTEMOPTION('IDXTV', '2-00:00:00'); // The interval of performing
the auto index daemon is 2 days.
dmSQL> CALL SETSYSTEMOPTION('IDXDP', '60'); // An index which is not used reaches
or exceeds 60 days will be dropped by auto index daemon.
dmSQL> CALL SETSYSTEMOPTION('IDXLN', '10'); // If the same scan log number
reaches or exceeds 10, an auto index will be created according to these log.

 Example 7

If user update the license, call this function may reload the license.

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-33

dmSQL> CALL SETSYSTEMOPTION('LIC_RELOAD', '1');

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-34

5.16 SETSYSTEMOPTIONW
The SetSystemOptionW system-stored procedure is used to set system option during
run time and writing run time setting to dmconfig.ini file.

This stored procedure is an extension of SetSystemOption, and support all system

options that SetSystemOption can change, The following table lists all of the
option_name system option values that obtained by calling the system-stored
procedure SetSystemOptionW, and a brief description of what keyword is contained

in each option_name. For more details of related keywords, please refer to Database
Administrator's Guide.

DBMaker can set system option at run time by calling the system stored procedure

setSystemOption(), and now add new system stored procedure setSystemOptionW()
to support setting system option at run time and writing run time setting to
dmconfig.ini file. User also can get new option value through calling getSystemOtion.

OPTION_NAME DESCRIPTION
FODIR On-line change the system file object directory (DB_FoDir).

option_name is the new full path. Empty string, i.e. ' ', disables
the feature of the system file object.

LGSVR Server log level (DB_LgSvr)
LGERR Server log error level (DB_LgErr)
LGSTM Server log statment execution time over n secs (DB_LgSTm)
LGSYS Server log the system info ((DB_LgSys)
LGFSZ Server log file size (DB_LgFSz)
LGFNO Server log file number (DB_LgFNo)
LGSQL Server log the sql command (DB_LgSQL)
LGPLN Server log the execution plan (DB_LgPLn)
LGPAR Server log the input parameter value (DB_LgPar)
LGLCK Server log extra lock time out informatin when it exceed

error argument's length (DB_LgLck)
LGDIR Server log directory (DB_LgDir)

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-35

LGDAY The number of days to keep server log files (DB_LgDay)
LGZIP Zip closed log files (DB_LgZip)
BKCHK Whether check database before full backup and differential

backup (DB_ BkChk)
BKCMP The compact backup mode (DB_BkCmp)
BKDIR Directory to store backup journal files (DB_BkDir)
BKFOM The file object (FO) backup mode (DB_BkFoM)
BKFRM The format Backup Server used to name incremental backup

journal files (DB_BkFrm)
BKFUL The percentage full of the journal files that triggers the

backup server to perform an incremental backup (DB_BkFul)
BKITV The backup time interval (DB_BkItv)
BKODR The directories where the backup server puts the previous

version of full backup files (DB_ BkOdr)
BKRTS Whether the backup server includes the read-only tablespace

files when performing a full-backup (DB_BkRTs)
BKSPM The store procedure(SP) backup mode(DB_BkSPm)
BKSVR whether a backup server is activated (DB_BkSvr)
BKTIM The first time a backup server performs an incremental

backup (DB_BkTim)
BKZIP Whether the backup files are compressed by a backup server

when performing full backups (DB_BkZip)
CTBLM The default lock mode used when creating a table

(DB_CTbLM)
DBKMX The maximum number of differential backup after a full

backup (DB_DbKmx)
DBKTV The differential backup time interval (DB_DbKtv)
DDBMD whether the DDB (Distributed DataBase) function is enabled

on the database server (DD_DDBMd)

EXTNP A size for DBMaker to extend autoextend tablespace
(DB_ExtNp)

FBKTM The first time the Backup Server will perform a full

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-36

backup (DB_FBkTm)

FBKTV The full backup time interval (DB_FBkTv)

FOSUB The maximum number of file objects that may be stored in
each system file object subdirectory (DB_FoSub)

IDXDP Auto drop index threshold for auto index daemon
(DB_IdxDp)

IDXLN Auto create index threshold for auto index daemon
(DB_IdxLn)

IDXTM The start time for auto index daemon (DB_IdxTm)

IDXTV The auto index daemon interval (DB_IdxTv)

IDXSV Activate auto index daemon (DB_IdxSv)

LETPT

The Lock Escalation Threshold for escalating a page lock
to a table lock (DB_LetPT)

LETRP The Lock Escalation Threshold for an escalating rowlock to
a page lock (DB_LetRP)

SQLST The display mode of the SQL command monitor
(DB_SQLST)

STSVR Start update statistics daemon (DB_StSvr)

STMOD The incremental update statistics mode for a database
(DB_StMod)

STSTM The start time for update statistics (DB_StsTm)

STSTV The update statistics daemon interval (DB_StsTv)

STSSP The update statistics sample (DB_StsSP)

USRFO User file objects can be inserted in a database (DB_UsrFo)

 The prototype for SETSYSTEMOPTIONW is:
SETSYSTEMOPTIONW(VARCHAR(32) OPTION_NAME INPUT,

VARCHAR(8576) OPTION_VALUE INPUT)

option_namethe name of the system option

option_valuethe value of the system option

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-37

 Example

To start update statistics daemon, set value of STSVR to 1 by calling
setSystemOptionW during runtime, and then the run time setting will be written into
dmconfig.ini file, as following:

The dmconfig.ini file before calling stored procedure setSystemOptionW() is:
[DBSAMPLE5]
; Here omit other keywords
DB_StSvr = 0

Execute call setSystemOptionW ('optionName', 'optionValue'):
dmSQL> CALL SETSYSTEMOPTIONW('STSVR', '1');
dmSQL> CALL SETSYSTEMOPTION('STSVR',?);
OPTION_VALUE : 1

The dmconfig.ini file after calling stored procedure setSystemOptionW is:
[DBSAMPLE5]
; Here omit other keywords
DB_StSvr = 1

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-38

5.17 SOADD
The SOADD system-stored procedure is used to increase the shared object's value.

 The prototype for SOADD is:
SOADD(INTEGER SHID,

INTEGER ADDEND,
 INTEGER NEW_VAL OUTPUT)

shidthe id of the shared object

addendthe positive or negative value to add

new_valthe value after adding

 Example

The following syntax is used to add 3 to shared object 2 and get the new value = 3.
dmSQL> CALL SYSADM.SOADD(2,3,?);
new_val: 3

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-39

5.18 SOCREATE
The SOCREATE system-stored procedure is used to create shared objects. To use a
shared object, use SOCreate to create the shared object with a specified identifier and
initial value. Then, to read, modify, or to increase the shared object value use SORead,

SOSet or SOAdd respectively by indicating its identifier. Since the shared object can
be accessed by any connection, it supports SOLock and SOUnlock for concurrency
control. When the shared object is no longer in use it can be dropped with SODrop.

 The prototype for SOCREATE is:
SOCREATE(INTEGER SETID,
 INTEGER INIT_VAL,
 INTEGER SHID OUTPUT)

Setid……………… the assigned id of the shared object

0: system assigned, otherwise:user assigned

init_val initial value

shid id of the created shared object

 Example 1

The following syntax is used to create a shared object with an initial value = 0 with a

system assigned id = 0.
dmSQL> CALL SYSADM.SOCREATE(0,0,?);
Shid: 1

 Example 2

The following syntax is used to create shared object 2 with an initial value = 0.
dmSQL> CALL SYSADM.SOCREATE(2,0,?);
Shid: 2

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-40

5.19 SODROP
The SODROP system-stored procedure is used to drop a shared object. This can be
used when the object is no longer in use.

 The prototype for SODROP is:
SODROP(INTEGER SHID)

shidid of the shared object to drop

 Example

The following syntax is used to drop shared object 1.
dmSQL> CALL SYSADM.SODROP(1);

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-41

5.20 SOLOCK
The SOLOCK system-stored procedure is used to lock a shared object. After a shared
object has been locked, other users cannot read, set, add, drop, lock, or unlock it.
Only the user that set the lock can use the other six system-stored procedures on it.

 The prototype for SOLOCK is:
SOLOCK(INTEGER SHID)

shid id of shared object which are desired to lock

 Example

The following syntax is used to lock shared object 1.
dmSQL> CALL SYSADM.SOLOCK(1);

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-42

5.21 SOREAD
The SOREAD system-stored procedure is used to read (get) the value of a shared
object.

 The prototype for SOREAD is:
SOREAD(INTEGER SHID,
 INTEGER VAL OUTPUT)

shidthe id of shared object

valvalue of the shared object

 Example

The following syntax is used to get the value of shared object 2.
dmSQL> CALL SYSADM.SOREAD(2,?);
val: 3

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-43

5.22 SOSET
The SOSET system-stored procedure is used to set or modify a shared object's values.

 The prototype for SOSET is:
SOSET(INTEGER SHID,
 INTEGER NEW_VAL,
 INTEGER OLD_VAL OUTPUT)

shid the id of shared object

new_val value to assign

old_val value before the assignment

 Example

The following syntax is used to set the value of shared object 2 to –2.
dmSQL> CALL SYSADM.SOSET(2,-2,?);
old_val: 3

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-44

5.23 SOUNLOCK
The SOUNLOCK system-stored procedure is used to unlock a shared object. After a
shared object has been locked, other users cannot read, set, add, drop, lock, or unlock
it. Only the user that placed a lock on the shared object may unlock it.

 The prototype for SOUNLOCK is:
SOUNLOCK(INTEGER SHID)

shidid of shared object to be unlocked

 Example

The following syntax is used to unlock shared object 1.
dmSQL> CALL SYSADM.SOUNLOCK(1);

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-45

5.24 START_DMSCHSVR
The START_DMSCHSVR system-stored procedure is used to start dmschsvr.

 The prototype for START_DMSCHSVR is:
START_DMSCHSVR(VARCHAR(8) TASKRUNNUM INPUT,
 VARCHAR(128) SCHELOGDIR INPUT)

Taskrunnum.............the task numbers that can be aroused by dmschsvr at the same
time. The range of this value is 1 ~ 50, and the default value is
30.

schelogdir..................the path indicating the directory of dmschsvr's log files. The
default path is same with the path specified by DB_DbDir. The
log filename format is <DB_NAME><_><Date>, e.g.

DBSAMPLE5_20150135.log.

 Example

The following syntax is used to start dmschsvr.
dmSQL> CALL START_DMSCHSVR ('30', 'C:\DBMaker\5.4\SAMPLES\DATABASE');

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-46

5.25 STOP_DMSCHSVR
The STOP_DMSCHSVR system-stored procedure is used to stop dmschsvr.

 The prototype for STOP_DMSCHSVR is:
STOP_DMSCHSVR

 Example

The following syntax is used to stop dmschsvr.
dmSQL> CALL STOP_DMSCHSVR;

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-47

5.26 TASK_ALTER
The TASK_ALTER system-stored procedure is used to alter an existing task.

Except for TASK_NAME, all task parameters can be altered. If a parameter of a task is
altered while the task is running, the task will use the new parameter when it runs next

time according to users' schedule.

 The prototype for TASK_ALTER is:
TASK_ALTER(VARCHAR(128) TASK_NAME INPUT,
 VARCHAR(16) TASK_TYPE INPUT,
 VARCHAR(2048) ACTIONS INPUT)

task_name the name of the existing task to alter.

task_type.................. the type of the task. There are three options: SQL_
STATEMENT (abbr. SQL), STORE_PROCEDURE (abbr.

SP), and EXECUTABLE (abbr. EXEC). SQL_STATEMENT
means the task is a sql statement; STORE_PROCEDURE means
the task is a procedure; EXECUTABLE means the task is an

executable program.

actions.................... the actions that the existing task performs regularly. It must
match the type of the existing task.

 Example

The following syntax is used to alter task "insert_t1". In this example, alter the action

"INSERT INTO t1 VALUES(1, 2)" to "INSERT INTO t1 VALUES(1, 3)". For
more information of task insert_t1, please refer to the example in Chapter 5.27,
TASK_CREATE.
dmSQL> CALL TASK_ALTER('insert_t1','SQL_STATEMENT','INSERT INTO t1 VALUES(1,3)');

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-48

5.27 TASK_CREATE
The TASK_CREATE system-stored procedure is used to create a task. A task is user-
defined and scheduled to run one or more times. It is a combination of actions (what
needs executions) and executed by a schedule.

 The prototype for TASK_CREATE is:
TASK_CREATE(VARCHAR(128) TASK_NAME INPUT,

VARCHAR(16) TASK_TYPE INPUT,
VARCHAR(2048) ACTIONS INPUT)

task_name..............the name of the task to create. It can contain 1 to 128 letters,

numbers, and underscores, but the first character cannot be
numbers.

task_type............... the type of the task to create. There are three options:

SQL_STATEMENT (abbr. SQL), STORE_PROCEDURE
(abbr. SP), and EXECUTABLE (abbr. EXEC).
SQL_STATEMENT means the task is a sql statement;

STORE_PROCEDURE means the task is a procedure;
EXECUTABLE means the task is an executable program.

actions................... the actions that the task will perform regularly. It must match the

type of the task to create, and its maximum length is 2K bytes.

 Example

The following syntax is used to create a task named insert_t1to insert values into table
t1.
dmSQL> CALL TASK_CREATE('insert_t1','SQL_STATEMENT','INSERT INTO t1
VALUES(1,2)');

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-49

5.28 TASK_DROP
The TASK_DROP system-stored procedure is used to delete an existing task.

If a task has been added into a schedule, an error will occur when a user uses
TASK_DROP to delete this task, that is to say, users should make sure that no user

use this task before dropping it.

 The prototype for TASK_DROP is:
TASK_DROP(VARCHAR(128) TASK_NAME INPUT)

task_name the name of the task to delete

 Example

The following syntax is used to delete task insert_t1. For more information of task
insert_t1, please refer to the example in Chapter 5.27, TASK_CREATE.
dmSQL> CALL TASK_DROP('insert_t1');

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-50

5.29 XMLEXPORT
The XMLEXPORT system-stored procedure provides a programmable interface for
users to export XML data from DBMaker. Only a user with SYSADM, SYSDBA or
DBA security privilege can call these stored procedures. In addition, the execute

privilege cannot be granted to other users because XMLEXPORT is a system-stored
procedures.

XMLEXPORT exports tables from a DBMaker database to an XML file and can

process multiple tables within one call of the corresponding stored procedures.
Descriptions on the mapping between the content of XML files and DBMaker tables
are outlined in a description string. This description string is used as one of the

arguments passed into the stored procedure.

 The prototype for XMLEXPORT is:
XMLEXPORT(VARCHAR(256) FILE_PATH,
 VARCHAR(256) DB_TAG,
 VARCHAR(256) XML_HEADER,
 VARCHAR(16000) OBJECT_STR,
 VARCHAR(256) OPTION_STR,
 VARCHAR(256) LOG_PATH)

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-51

NAME TYPE LENGT
H
(BYTES)

DESCRIPTION CASE
SENSITIVITY

file_path varchar 256 Full path of
exported xml file

Depends on
operating system

db_tag varchar 256 Customized
database tag

Yes (output has the
same capitalization)

xml_header varchar 256 Customized xml
header

Yes (output has the
same capitalization)

object_str varchar 16000 Description string
for exported objects

Depends on
DBMaker setting

option_flag varchar 256 Description string
for option flags

No

log_path varchar 256 Full path of error log
file on the client

Varies by operating
system

Table 5-3 XMLEXPORT Arguments table

Constructing XMLEXPORT Arguments

The XML file designated for exporting from a database must first be generated on the
server. The file_path is specified by a full path string passed in as one of the arguments

of the corresponding stored procedure.

Next, the db_tag is used to customize a tag. The default value (i.e., database name) is
used if a NULL or empty string is present.

Next, the argument object_str is used as shown here:
Object_str=:

{ <element> [; <element>…]

<element>=:

{TABLE_NAME | <select_query>} [#TABLE_TAG]

An <element> represents a table and is delimited by semi-colons. If the first token
from <element> is "select" (case insensitive comparison), this <element> is seen as

<select_query> [#TABLE_TAG]. Otherwise, this <element> is seen as

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-52

TABLE_NAME [#TABLE_TAG]. "If <element> = TALBE_NAME
[#TABLE_TAG]", all columns in this table are selected and no customized column
tag can be specified. That is to say, in the exported XML file, the names of column

tags are the same as their corresponding table column names. Customized table tags
are specified with TABLE_TAG. The table name in the database is used as table tag
name when a TABLE_TAG is not specified.

If users want to specify a customized column tag name, they can only use
<select_query>[#TABLE_TAG] in the <element> string. The customized column tag
names are specified by using column alias names in the <select_query> statement. The

user must use "AS" in their <select_query>, for example, "select c1 as name, c2 as type
from t2" as the <select_query> statement, then column c1 becomes the "name" tag
and column c2 becomes the "type" tag in the exported XML file.

Next, users can specify an option string using option_flag. Each option is separated by
a semicolon. For example, to treat column names as attributes, use
"column_as_attribute" in the option string. If users do not specify a certain option,

that option is not set. The option flag string is case-insensitive.

OPTION FLAG SET NOT SET
blob_in_separate_file BLOB/CLOB column

data is exported as a temp
file separate from the
XML file. The name of
that temp file is recorded
in the exported DTD.

Blob/Clob column data is
exported as part of the
XML file.

column_as_attribute Columns are exported as
attributes instead of an
element in the XML file.

Columns are exported as
an element in the XML
file.

capitalize_tag_name All tag names are
capitalized in the XML
file.

The capitalization of all
tag names stays the same
as that of the
corresponding names in
database.

file_type_as_link File type data content is
not exported. Only the
name of the file is
exported to the XML file.

File type data content will
be exported as part of the
XML file.

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-53

no_schema_dtd Will not generate a
schema DTD when the
XML file is generated.

Will generate a
corresponding DTD along
with the XML file
exported.

Table 5-4 XMLEXPORT Options

Lastly, log files generated during XML file exporting are saved on the client machine
in the log_path.

Exporting XML Files

Suppose that we want to export two tables named tb_card, and tb_contact as one
file /usr/john/xmlexport.xml from a DBMaker database called Customer. In the
xmlexport.xml file, we want to use "EMPLOYEE" as our customized database tag,

"TITLE" as our customized table tag for the table "tb_card" and "NUMBER" as our
customized table tag for the table "tb_contact".

In addition, the customized column tags for ID, FNAME, LNAME and WORK of

the table tb_card are NO, FIRST_NAME, LAST_NAME and JOB respectively. We
will not use customized column tags for the table "tb_contact". We also want to
capitalize all tag names in the XML file and all BLOB column data (if any) will be

saved in another temporary file. Finally, our log file name is going to be saved as
/client/john/xmlexport.log. The contents of these two tables are as follows:

dmSQL> SELECT * FROM tb_card;
 ID FNAME LNAME WORK
=========== ==================== ==================== ====================
 1 Eddie Chang Manager
 2 Hook Hu SoftwareEngineer
 3 Jackie Yu SoftwareEngineer
 8 Jerry Liu Manager

dmSQL> SELECT * FROM tb_contact;
 NO FIRST_NAME LAST_NAME PHONE
=========== ==================== ==================== ====================
 1 Eddie Chang 2145678
 2 Hook Hu 2335678

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-54

 3 Jackie Yu 2346678
 4 Jerry Liu 2345671

 To export an XML file

1. File_path is the full path of the XML file to be exported. The generated file will
be on the server, thus the specified file path must also be on the server. The
string '/usr/john/xmlexport.xml' will be used for this argument.

2. db_tag is a customized database tag. A NULL or empty string means that a
default value is used. The string EMPLOYEE will be used for this argument.

3. In this example, we will use the object_str string;

'SELECT ID AS NO, FNAME AS FIRST_NAME, LNAME AS LAST_NAME, WORK

AS JOB FROM tb_card#TITLE;tb_contact#NUMBER'

4. We will use the "capitalize_tag_name;blob_in_separate_file" tag as our option
string for this argument.

5. For this argument, we will use "/client/john/xmlexport.log" for log path.

6. The resulting CALL XMLExport statement will have the following form:

CALL XMLExport(

'/usr/john/xmlexport.xml',

'EMPLOYEE',

'SELECT ID AS NO, FNAME AS FIRST_NAME, LNAME AS LAST_NAME, WORK

AS JOB FROM tb_card#TITLE;tb_contact#NUMBER',

'capitalize_tag_name;blob_in_separate_file',

'/client/john/xmlexport.log');

7. Part of the export file xmlexport.xml would be:

<EMPLOYEE>

 <TITLE>

 <NO>1</NO>

 <FIRST_NAME>Eddie</FIRST_NAME>

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-55

 <LAST_NAME>Chang</LAST_NAME>

 <JOB>Manager</JOB>

 </TITLE>

 <TITLE>

 <NO>2</NO>

 <FIRST_NAME>Hook</FIRST_NAME>

 <LAST_NAME>Hu</LAST_NAME>

 <JOB>SoftwareEngineer</JOB>

 </TITLE>

 <TITLE>

 <NO>3</NO>

 <FIRST_NAME>Jackie</FIRST_NAME>

 <LAST_NAME>Yu</LAST_NAME>

 <JOB>SoftwareEngineer</JOB>

 </TITLE>

 <TITLE>

 <NO>4</NO>

 <FIRST_NAME>Jerry</FIRST_NAME>

 <LAST_NAME>Liu</LAST_NAME>

 <JOB>Manager</JOB>

 </TITLE>

 <NUMBER>

 <NO>1</NO>

 <FIRST_NAME>Eddie</FIRST_NAME>

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-56

 <LAST_NAME>Chang</LAST_NAME>

 <PHONE>2145678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>2</NO>

 <FIRST_NAME>Hook</FIRST_NAME>

 <LAST_NAME>Hu</LAST_NAME>

 <PHONE>2335678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>3</NO>

 <FIRST_NAME>Jackie</FIRST_NAME>

 <LAST_NAME>Yu</LAST_NAME>

 <PHONE>2346678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>4</NO>

 <FIRST_NAME>Jerry</FIRST_NAME>

 <LAST_NAME>Liu</LAST_NAME>

 <PHONE>2345671</PHONE>

 </NUMBER>

</EMPLOYEE>

 Alternatively

1. Using the option "column_as_attribute" and calling XMLExport:

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-57

CALL XMLExport(

'/usr/john/xmlexport.xml',

'EMPLOYEE',

'SELECT ID AS NO, FNAME AS FIRST_NAME, LNAME AS LAST_NAME, WORK

AS JOB FROM tb_card#TITLE ',

'capitalize_tag_name;blob_in_separate_file;column_as_attribute

','/client/john/xmlexport.log');

2. The partial result will become:

<EMPLOYEE>

 <TITLE NO="1" FIRST_NAME="Eddie" LAST_NAME="Chang"

JOB="Manager" />

 <TITLE NO="2" FIRST_NAME="Hook" LAST_NAME="Hu"

JOB="SoftwareEngineer" />

 <TITLE NO="3" FIRST_NAME="Jackie" LAST_NAME="Yu"

JOB="SoftwareEngineer" />

 <TITLE> NO="4" FIRST_NAME="Jerry" LAST_NAME="Liu"

JOB="Manager" />

</EMPLOYEE>

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-58

5.30 XMLIMPORT
The XMLIMPORT system-stored procedure provides a programmable interface for
users to import XML data to DBMaker. Only a user with SYSADM, SYSDBA or
DBA security privilege can call these stored procedures. In addition, the execute

privilege cannot be granted to other users because XMLIMPORT is a system-stored
procedures.

XMLIMPORT will import tables from XML files to tables in DBMaker. When

importing from an XML file, users can simply store the whole XML file in the
database instead of parsing, (analyzing the file content and importing data into tables).
The XML file being imported must be on the server and the log file generated during

the importing of an XML file is saved on the client machine.

If users just want to store the whole XML file instead of parsing it, they must specify
the "key" used for storing the XML file. The key value can then be used when

querying a database for the stored XML file.

 The prototype for XMLIMPORT is:
XMLIMPORT(VARCHAR(256) FILE_PATH,
 VARCHAR(16000) OBJECT_STR,
 VARCHAR(256) OPTION_STR,
 VARCHAR(256) LOG_PATH)

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-59

NAME TYPE LENGTH
(BYTES)

DESCRIPTION CASE
SENSITIVITY

file_path varchar 256 Full path of exported
xml file

Depends on operating
system

object_str varchar 16000 Description string
for exported objects

XML tags are case
sensitive; table names
and table column
names depends on
DBMaker setting

option_flag varchar 256 Description string
for option flags

No

log_path varchar 256 Full path of error log
file on the client

Varies by operating
system

Table 5-5 XMLIMPORT Arguments table

Constructing XMLIMPORT Arguments

First, the XML file being imported from a database must be generated on the server.
The file_path is specified by a full path string passed in as one of the arguments of the

corresponding stored procedure.

Second, the object_str argument is used to describe imported objects. This
information includes document levels, the mapping between customized column tag

names, and inserted table column names, as well as the mapping between customized
table tag name and table name in the database. The format is as follows:
object_str =:
 { <table_element> [; <table_element>]...}

<table_element> =
 { <document mapping information>#<table mapping information> }

<document mapping information> =:
 {<document level string>[(<column tag names>)]

<document level string> =: {/<level1> [/<level2>/.....]}

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-60

<column tag names> =: {<tag1> [, <tag2>]...}

<table mapping information> =: <table import definition>

<table import definition> =: { <insert sql statement> | <target table
name>[(<table column names>)] }

<insert sql statement> =: INSERT INTO <target table name> [(<table column
names>)] VALUES (<value list>)

<table column names> =: {<col1> [, <col2>] ...}

<value list> =: {<insert value>, <insert value>,...}

<insert value> =: {<constant> | <expression>}

Figure 5-1 object_str Argument Syntax

If users want to store the entire XML file instead of parsing it and storing the content
in tables, they should use special handling in <column tag names>. Please see example

5.

<table_element>represents a table. The delimiter used between <element> is a semi-
colon. In the <document level string>, the document levels from the root level to the

table level are specified.

<root>
 <database>
 <table1>
 <column1>
 </column1>
 <column2>
 </column2>
 </table1>
 <table2>
 </table2>
 </database>
</root>

Figure 5-2 Sample XML File

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-61

Based on the sample XML file shown in Figure 5.2, to import data stored in the
<table1> tag of the<database>, specify a <document level string> of the
"/root/database/table1".

In <column tag names>, specify which column tags to insert into the table. If a
<column tag names> is not specified, all column tags under a certain table tag are
inserted.

In the <table import definition>, use either the format of <INSERT SQL statement>
or TABLE_NAME [<table column names>]. When using the <INSERT SQL
statement>, the INSERT SQL statement will be like this:
INSERT INTO <target table name> [(<table column names>)] VALUES (<value list>)

The <table column names> columns to be inserted are specified. If a <table column
names> is not specified, it is implied that the user is trying to insert all columns in the
target table (this is the same as the syntax for the ordinary INSERT SQL statement.)

Also, if there is a <column tag names> located in the <document mapping
information>, than the number of column tags specified in <column tag names> must
be equal to the number of host variables in the <value list>. If there are no <column

tag names> located in the <document mapping information>, it is implied that all
column tags under the base element are to be inserted into the target table. The
schema information in the dtd file is also used to check whether the number of tags is

equal to the number of host variables located in the <value list>.

The mapping between <table column names>, <value list> and <column tag names>
in the <document mapping information> file must be appropriate. The <column tag

names> are mapped to host variables in the <value list> file. The sequence of columns
in <table column names> combined with the sequence values in <value list> and the
sequence of tags <column tag names> decides what values are inserted into <value

list>.

When using <target table name>[(<table column names>)], specify the table to be
inserted into <target table name>. This <target table name> is mapped to the last level

in <document level string>.

When this format is used, a constant value insert or expression insert cannot be used.
If there is no <column tag names> specified in <document mapping information>,

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-62

there should be no <table column names> present either. If there is <column tag
names> in <document mapping information>, the number of tags in <column tag
names> must be equal to the number of columns in <table column names>.

In <table column names>, specify mapped table columns to be inserted. If no <table
column names> are specified, all table columns will be inserted. If that is the case,
there should be no <column tag names> in <document mapping information>. The

schema information in the dtd file will be used to check whether the number of all
tags under the base element is equal to the number of all columns in the target table.

Users are responsible for the mapping between <table column names> and <column

tag names>. The location of tags in <column tag names> should be mapped to that of
columns in <table column names>.

 Example 1

If the <table column names> is (c1, c2, c3), <value list> is (?,?,?) and <column tag
names> is (tg1, tg2, tg3), the value in tg1 is inserted into c1, the value in tg2 is

inserted into c2 and the value in tg3 is inserted into c3.

 Example 2

Assume that table t1 has four columns, c1, c2, c3, and c4, and that we have four tags,
tg1, tg2, tg3, tg4, in the xml element we are trying to import. Also, assume that the
obj_str is, "/root/book/order(tg1, tg2)#insert into t1 (c1, c2, c3) values (?,?+3, 5)".

From the string, we decide that table t1 is our target table, that the column c1 in table
t1 has the inserted value of tag tg1, that column c2 has the inserted value of tag tg2
plus 3, and that column c3 has the inserted constant value of 5.

 Example 3

If the user does not specify the usage of the <column tag names> file in the

<document mapping information>, it is implied that the sequence of xml column tags
matches the sequence of what is located in the <table column names>, and that all
column tags under the base element are to be inserted into the target table.

Assume that our target table t2 has five columns, c1, c2, c3, c4, and c5. Also, assume
that in our xml file, the sequence of tags is tg1, tg2, tg3, and tg4. If the obj_str is,

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-63

"/root/book/order#insert into t2 (c1, c2, c3, c4, c5) values (?, ?, ?, ?, 6)", the value of
tg1 is inserted into c1 of t2, the value of tg2 is inserted into c2 of t2, the value of tg3 is
inserted into c3 of t2, the value of tg4 is inserted into c4 of t2 and the constant value

of 6 is inserted into c5 of t2.

If the obj_str is "/root/book/order(tg1, tg2, tg3, tag4)#insert into t1 values (?, ?, ?, ?)".
This tells us that users are trying to insert 4 tags into all columns of our target table.

The value of tg1 is inserted into c1 of t1, the value of tg2 is inserted into c2 of t1, the
value of tg3 is inserted into c3 of t1, and the value of tg4 is inserted into c4 of t1.

 Example 4

If obj_str is "/root/book/order(tg1, tg2)#insert into t1 values (?, ?, acos(1))", the result
of acos(1) is inserted into c3 of t1.

 Example 5

For users who want to store the whole XML file in the record instead of parsing the

whole XML file and storing the content (i.e., parsing the whole XML file and then
storing the data in XML file in table), they have to specify a "virtual tag" in <column
tag names>. This special "virtual tag" is named "_XML_FILE_".

If this "_XML_FILE_" is used as the column tag name, the columns represented by
the column tags preceding this special "virtual tag" are used as the key value. In
addition, the mapped value in the <value list> file must be a single host variable

without any further calculation.

If the following object string, "/root/book/order(tag1, tag2, XML_FILE_)#insert into
t2 (c1, c2, c3, c4, c5) values (?+2, ?*5, ?, 7, 8)", is used then the whole file will be

inserted into c3 of table t2.

If <table_element> in the object string, "/root/book/order(tag1, tag2,
_XML_FILE_)#customer(firstname, lastname, xml_file)", is used for the table

"customer", then firstname is inserted from the tag1 tag into the XML file. In
addition, the lastname is inserted from the tag2 tag into the XML file and the xml_file
will be inserted from the whole XML file. The firstname and lastname are used as keys

for finding a specific XML file.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-64

 Example 6

In <column tag names> = <tag1, tag2, tag3> and <table column names> = <c1, c2,
c3>, there are three pairs of mapping: tag1 <-> c1, tag2 <-> c2, tag3 <-> c3. Tag
names and column names are all-or-nothing. That means that empty tag names such

as (tag1, ,tag3) are not permissible, neither are empty column names. All customized
tag names must specify or none of them at all.

So, the object string "/root/book/order(tag1, , tag2)#insert into t2 (c1, c2) values

(?, ?, ?)" is not permissible. An object string of "/root/book/order(tag1, tag2,
tag3)#insert into t2 (c1, c2, c3, c4) values (?, ?, ?,) is permissible. What is inserted into
c4 of t2 depends on the table schema information.

Thirdly, the option_flag string is case-insensitive. When the option_flag string is set,
the column_as_attribute columns in the imported XML file are treated as attributes.
When the option_flag string is not set, the columns are treated as elements in the

XML file.
Option_flag=:{[<attribute>[;<attribute>]…]}
<attribute>=:
{
column_as_attribute
}

Lastly, the log file of errors generated during the importing of XML files are saved on
the client machine in the log_path.

Importing XML Files

Assume that we have an XML file, xmlimport.xml under the /usr/john directory. The
file is listed as follows.
<ROOT>
 <EMPLOYEE>
 <TITLE>
 <TAG1>1</TAG1>
 <TAG2>Eddie</TAG2>
 <TAG3>Chang</TAG3>
 <TAG4>Manager</TAG4>
 </TITLE>

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-65

 <TITLE>
 <TAG1>2</TAG1>
 <TAG2>Hook</TAG2>
 <TAG3>Hu</TAG3>
 <TAG4>SoftwareEngineer</TAG4>
 </TITLE>
 <TITLE>
 <TAG1>3</TAG1>
 <TAG2>Jackie</TAG2>
 <TAG3>Yu</TAG3>
 <TAG4>SoftwareEngineer</TAG4>
 </TITLE>
 <TITLE>
 <TAG1>4</TAG1>
 <TAG2>Jerry</TAG2>
 <TAG3>Liu</TAG3>
 <TAG4>Manager</TAG4>
 </TITLE>
 <NUMBER>
 <NO>1</NO>
 <FIRST_NAME>Eddie</FIRST_NAME>
 <LAST_NAME>Chang</LAST_NAME>
 <PHONE>2145678</PHONE>
 </NUMBER>
 <NUMBER>
 <NO>2</NO>
 <FIRST_NAME>Hook</FIRST_NAME>
 <LAST_NAME>Hu</LAST_NAME>
 <PHONE>2335678</PHONE>
 </NUMBER>
 <NUMBER>
 <NO>3</NO>
 <FIRST_NAME>Jackie</FIRST_NAME>
 <LAST_NAME>Yu</LAST_NAME>
 <PHONE>2346678</PHONE>
 </NUMBER>
 <NUMBER>
 <NO>4</NO>
 <FIRST_NAME>Jerry</FIRST_NAME>

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-66

 <LAST_NAME>Liu</LAST_NAME>
 <PHONE>2345671</PHONE>
 </NUMBER>
 </EMPLOYEE>
<ROOT>

We are trying to import the data recorded in the xmlimport.xml file into the
following database schema:
Database Name: DB_TEST
Table Name: TB_CARD(ID CHAR(30), FNAME CHAR(30), LNAME CHAR(30), WORK CHAR(30))
Table Name: TB_CONTACT(NO CHAR(30), FIRST_NAME CHAR(30), LAST_NAME CHAR(30),
PHONE CHAR(30))

From the content of the above .xml file, we can see that under the <EMPLOYEE>

element, there are two sub-elements. We can map <EMPLOYEE> element as the
database level, the <TITLE> as the table level and the <NUMBER> as another table
level in the import database.

Assume that we want to import <TITLE> into TB_CARD table and <NUMBER>
into TB_CONTACT table. The mapping of xml document tags to database tables is
as follows:
/ROOT/EMPLOYEE/TITLE -> /DB_TEST/TB_CARD
/ROOT/EMPLOYEE/NUMBER -> /DB_TEST/TB_CONTACT

The mapping between the XML document tags and table columns is as follows:

The elements under /ROOT/EMPLOYEE/TITLE(the mapping between <TITLE>
and TB_CARD table):
TAG1 -> NO
TAG2 -> FIRST_NAME
TAG3 -> LAST_NAME
TAG4 -> JOB

The elements under /ROOT/EMPLOYEE/NUMBER (the mapping between
<NUMBER> and the TB_CONTACT table):
NO -> NO
FIRST_NAME -> FIRST_NAME
LAST_NAME -> LAST_NAME
PHONE -> PHONE

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-67

In addition, we can see in xmlimport.xml that columns are treated as elements in the
target XML file. Finally let us assume that our log file is /client/john/xmlimport.log.

For importing into table TB_CARD, the elements under /ROOT/EMPLOYEE/TITLE

are imported. TAG1 is mapped to column ID, TAG2 is mapped to column FNAME,
TAG3 is mapped to column LNAME and TAG4 is mapped to column WORK.

For Importing into table TB_CONTACT, the elements under

/ROOT/EMPLOYEE/NUMBER are imported. All elements under the <NUMBER>
tag are imported and they are assumed a direct mapping to columns in table
TB_CONTACT.

Note that xml tags are case-sensitive subsequently, ROOT, EMPLOYEE, TITLE,
TAG1, TAG2, and TAG3 in this example must be capitalized. The case-sensitivity of
table names and table column names depends on DBMaker settings.

 To use XMLIMPORT with the above files:

1. The file must be on the server, thus the specified full path must also be on the
server. The file_path used in the argument is "/usr/john/xmlimport.xml".

2. The object_str can be used like this

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#INSERT INTO

TB_CARD (ID,FNAME,LNAME,WORK) VALUES

(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#tb_contact'

or

'/ROOT/EMPLOYEE/TITLE#INSERT INTO TB_CARD (ID,FNAME,LNAME,WORK) VALUES
(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#tb_contact'

or

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#CARD
(C1,C2,C3,C4);/ROOT/EMPLOYEE/NUMBER#contact'

3. The object string used can have several formats:

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-68

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#INSERT INTO

TB_CARD (ID,FNAME,LNAME,WORK) VALUES

(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#TB_CONTACT'

or, since there are four tags mapping four columns and the sequence of tags
are the same as the columns:

'/ROOT/EMPLOYEE/TITLE#INSERT INTO TB_CARD (ID,FNAME,LNAME,WORK)

VALUES (?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#TB_CONTACT'

or,

'/ROOT/EMPLOYEE/TITLE#INSERT INTO TB_CARD VALUES

(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#TB_CONTACT'

or, since no further calculation of host variables is required:

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#TB_CARD(ID, FNAME,

LNAME, WORK);/ROOT/EMPLOYEE/NUMBER#TB_CONTACT'

4. Since columns are treated as elements in the XML file, we will not set the
option_flag here. If these columns were not treated as elements, the option_flag
could be set.

option_flag =: {[<attribute> [;<attribute>]...]}

<attribute> =:

{

column_as_attribute

}

5. The log_path will be: "/client/john/xmlimport.log. This is where errors are
recorded during the process of XMLIMPORT. "

6. Call XMLIMPORT using one of possible forms of obj_str:

CALL XMLImport (

'/usr/john/xmlimport.xml',

1System-Stored Procedures 5

©Copyright 1995-2017 CASEMaker Inc. 5-69

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3,

TAG4)#TB_CARD(ID,FNAME,LNAME,WORK);/ROOT/EMPLOYEE/NUMBER#tb_cont

act',

'',

'/client/john/xmlimport.log');

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 5-70

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-1

6 dmSQL Commands

The commands presented in this chapter require CASEMaker's dmSQLTool included
with DBMaker.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-2

6.1 CONNECT
The CONNECT command establishes a connection to a database. The user name
and password are case-sensitive, while the database name is not. Any user with

CONNECT or higher security privileges can execute the CONNECT command.

Before connecting to a database, the dmconfig.ini file on the computer must contain
a database configuration section for the target database. The database configuration

section should already exist if the database was created on the local computer. If the
database was created on a remote computer, add the database configuration section.

Use the CONNECT command to connect to a single-user database. This starts the

database and establishes a connection. Only one user may be connected to a single-
user database.

Before connecting to a single-user database, specify the database directory. Use the

DB_DbDir keyword to set the directory containing the database in the dmconfig.ini
file.

Use the CONNECT command to connect to a client/server database while the

database server is running. If the database server is not running, start it before trying
to connect.

Before connecting to a client/server database, specify the IP address of the host

computer running the DBMaker server and the port number of the database. Use the
DB_SvAdr and DB_PtNum keywords to set the IP address and the port number in
the dmconfig.ini file. Alternatively, substitute a host name in place of an IP address

when using the DB_SvAdr keyword.

DBMaker will try to connect to a client/server database until the connection timeout
period expires. The connection timeout period is specified by the DB_CTimO

keyword in the dmconfig.ini file. The DB_CTimO keyword does not apply to single-
user databases.

The user name and password are not optional with one exception; if the password is

NULL omit it. You may also omit the user name and password from the CONNECT
command using the DB_UsrId and DB_PasWd keywords in the dmconfig.ini file.

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-3

The DB_UsrId keyword specifies a default user name and the DB_PasWd keyword
specifies a default password. You cannot specify one parameter on the command line

and the other in the configuration file; DBMaker always takes the user name and
password from the same location. DBMaker ignores the values specified by the
DB_UsrId and DB_PasWd keywords if you provide a username and password with

the CONNECT command.

database_name Name of the database being connected to

user_name Name of the user connecting to the database

password Current password of user user_name

Figure 6-1 CONNECT syntax

 Value 1

The dmconfig.ini file will provide a value for the DB_DbDir keyword in the Tutor1

configuration section.
[TUTOR1]
DB_DbDir = C:\DBMAKER\DATABASE\TUTOR1

 Example 1

The following connects the user jenny with password grala833 to the single-user
Tutor1 database.
dmSQL> CONNECT TO Tutor1 jenny grala833;

 Value 2a

The dmconfig.ini file will provide a value for the DB_SvAdr and DB_PtNum
keywords in the Tutor2 configuration section.
[TUTOR2]
DB_SvAdr = 192.72.116.137

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-4

DB_PtNum = 35400

 Value 2b

Alternatively use a host name for the DB_SvAdr keyword instead of an IP address.
[TUTOR2]
DB_SvAdr = mars.syscom.com.tw
DB_PtNum = 35400

 Example 2

The following connects the user amanda with password grixa944 to the multi-user
Tutor2 database.
dmSQL> CONNECT TO Tutor2 amanda grixa944;

 Value 3

The dmconfig.ini file provides values for the DB_SvAdr, DB_PtNum, DB_UsrId,
and DB_PasWd keywords in the Tutor2 configuration section.
[TUTOR2]
DB_SvAdr = 192.72.116.137
DB_PtNum = 35400
DB_UsrId = vivian
DB_PasWd = shuka828

Alternatively, substitute a host name for the IP address for DB_SvAdr, the same as in
Value 2b.

 Example 3

The following connects the user vivian with password shuka828 to the multi-user
Tutor2 database. The user name and password are not provided in the command

since they are specified by the DB_UsrId and DB_PasWd keywords in the
dmconfig.ini configuration section. If you provide a user name and password in the
command, DBMaker ignores the values specified by the DB_UsrId and DB_PasWd

keywords.
dmSQL> CONNECT TO Tutor2;

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-5

6.2 CREATE DATABASE
The CREATE DATABASE command creates a new database. To execute the
CREATE DATABASE command, DBMaker must have write permission (e.g., from

the operating system) on the directory where the database will be created. Any user
can execute the CREATE DATABASE command.

DBMaker stores all configuration information for each database in dmconfig.ini. This

file contains a database configuration section for each database you can connect to
from the computer. The dmconfig.ini file is an ASCII text file, and can be edited with
a text editor.

Each database configuration section is comprised of a section header followed by one
or more keyword lines. The section header is the name of the database enclosed in
square brackets. The keyword lines consist of a keyword and a corresponding value(s).

If a keyword requires or supports multiple values, delimit individual values with either
spaces or commas. Depending on their purpose, keywords may be used, at start time
or connect time.

Key words in the dmconfig.ini file are not case-sensitive. Keyword values may be case-
sensitive, depending on the keyword and the operating system the database is running
on. When creating a database, DBMaker will examine the dmconfig.ini file for a

database configuration section. If a database configuration section with the same name
as the database exists, DBMaker uses the values specified in this section when it
creates the database. If a database configuration section with the same name as the

database does not exist, DBMaker uses default values when it creates the database and
adds a new configuration section.

Choose a database name that is unique from all computers that will be connecting.

Since, DBMaker stores configuration information for all local and remote databases in
the dmconfig.ini file, using the same name for two databases will cause a conflict. You
cannot change the database name once it has been created, unless you unload all data

and recreate the database with a new name. Database names have a maximum length
of 128 characters, and may contain letters, numbers, and the underscore character.
Database names are not case-sensitive.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-6

In the DBMaker physical storage model, files are physical units of storage that contain
the data. Files are managed by the operating system, while data in the files is managed

by the DBMS. DBMaker uses three types of files Data, BLOB, and Journal.

Data and BLOB files store user and system data. Although they have similar
characteristics, DBMaker manages these two file types in different ways to improve

performance. Data files store table and index data, while BLOB files store only binary
large objects.

Journal files are special files that provide a real-time, historical record of all changes

made to a database and the status of each change. This allows the database to undo
changes made by a transaction that fails, or redo changes made successfully but not
written to disk after a database crash. Journal files are used only by the database

management system, and are not used to store user data.

In the DBMaker logical storage model, tablespaces are the logical storage structures
used to partition information in a database into manageable areas. Each tablespace

may contain several tables and indexes. Data in the tablespace is managed by the
DBMS, but is physically stored in files. There are three types of tablespaces regular,
autoextend, and system.

Regular tablespaces have a fixed size and contain one or more Data or BLOB files.
They may be extended manually by enlarging existing files in the tablespace or adding
new files to the tablespace. A regular tablespace may contain a maximum of 32,767

files, with a maximum cumulative file size of 8 TB. On UNIX platforms, regular
tablespaces may be placed on raw devices.

NOTE For more information on raw devices, see your UNIX system documentation.

Autoextend tablespaces automatically increase in size to a maximum of 8 TB to hold
additional data as required. They must contain one data file, and may contain one
BLOB file. To add new files to an autoextend tablespace, first convert it to a regular

tablespace. If an autoextend tablespace is created with only one Data file and no
BLOB file, a BLOB file may be added later. Autoextend tablespaces do not support
raw devices.

DBMaker generates system tablespaces, while a database is created. Each database has
one system tablespace, which contains the system catalog tables used to store schema,

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-7

security, and status information. The system tablespace is created as an autoextend
tablespace, unless created on a UNIX raw device. System tablespaces may be converted

to regular tablespaces. System tablespaces are created with an initial data file size of
600 KB, and an initial BLOB file size of 20 KB.

DBMaker will create one system data file and one system BLOB file in the system

tablespace, and create one user data file and one user BLOB file in the default user
tablespace. DBMaker also creates at least one system Journal file to log database
transactions.

The default names for the system files are DATABASE.SDB, DATABASE.SBB, and
DATABASE.JNL, where DATABASE is the name of the database. To change the
default names, use the DB_DbFil, DB_BbFil, and DB_JnFil keywords in the

dmconfig.ini file. Use DB_DbFil to specify the name of the system data file,
DB_BbFil to specify the name of the system BLOB file, and DB_JnFil to specify the
name of the system Journal file. Specify a new name before creating a database or the

default name will be used. The name of a system file may not be changed after
creating the database.

The default user files names are DATABASE.DB and DATABASE.BB.DATABASE

is the name of the database. To change the default names, use the DB_UsrDb and
DB_UsrBb keywords in the dmconfig.ini file. Use DB_UsrDb to specify the name
and size of the default user data file, and DB_UsrBb to specify the name and size of

the default user BLOB file. When using these two keywords to specify new names for
the default user files, also include the size of the file in Data pages or BLOB frames,
separated from the filename by a space or comma. If the default name is not used for

either of the default user files, specify a new name before creating the database.

DBMaker can use up to eight Journal files to log database transactions. To create
multiple Journal files, add additional filenames after the DB_JnFil keyword, separated

by spaces or commas. DBMaker automatically creates these Journal files when it
creating the database. It is possible to add additional Journal files to a database after
creating it by adding additional Journal filenames and restarting the database in new

Journal mode.

To include a path with a filename, include the drive and full path on Windows
systems. On UNIX systems, include either a full or a relative path. By default, the file

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-8

will be created in the directory specified by the DB_DbDir keyword in the
dmconfig.ini file, or the application directory if the DB_DbDir keyword is not

present. DBMaker system files may have filenames with a maximum length of 256
characters, and may contain any characters and symbols permitted by the operating
system, except spaces.

The default sizes for the system files are 600 KB for the data file, 20 KB for the BLOB
file, and 4,000 KB for the Journal file. To change the default file sizes, use the
DB_BfrSz and DB_JnlSz keywords in the dmconfig.ini file.

The DB_BfrSz keyword specifies the size of frames in the system BLOB file, which
also changes the size of the system BLOB file. Provide a value for DB_BfrSz when
you create your database if you do not want to use the default, and it cannot be

changed after creating the database.

The DB_JnlSz keyword specifies the size of the system Journal file in Journal blocks,
which are the primary unit of storage in a Journal file. Journal blocks store a record of

every transaction performed on the database. The size of each Journal block is
determined by the DB_PgSiz in dmconfig.ini file. Each Journal block can store
information on as many transactions as will fit into a block. To specify a size for a

system Journal file, set the DB_JnlSz keyword to a value between 23 and 524,287
blocks. To calculate the actual size of the file in kilobytes, multiply this value by the
value of the DB_PgSiz as specified in the dmconfig.ini file. If your database has

multiple Journal files, DBMaker creates each Journal file with the size specified by
DB_JnlSz. The default value for DB_JnlSz is 1,000 pages. The DB_JnlSz keyword
may be changed at any time, but it will not take effect until the next time the database

is started in New Journal Mode.

The default sizes for the default user files are 600 KB for the default user data file, and
20 KB for the default user BLOB file. To change the default file sizes, use the

DB_UsrDb and DB_UsrBb keywords in the dmconfig.ini file.

The DB_UsrDb keyword specifies the size of the default user data file in data pages,
which are the primary unit of storage. Data pages store table records, index keys, and

any BLOB data small enough to fit onto the data page. Each data page can store as
many table rows or index keys as will fit onto a page. The size of each data page is
determined by the DB_PgSiz as specified in the dmconfig.ini file. To specify a size for

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-9

the default user data file, set the size parameter of the DB_UsrDb keyword to a value
between 2 and 524,287 pages. To calculate the actual size of the file in kilobytes,

multiply this value by the value of the keyword DB_PgSiz as specified in the
dmconfig.ini file. The default value of DB_UsrDb is 150.

The DB_UsrBb keyword specifies the size of the default user BLOB file in BLOB

frames, which are the primary unit of storage in a BLOB file. BLOB frames store large
binary data objects, graphics, audio and video, or large text, which does not fit onto a
data page. Each BLOB frame can only store a single BLOB. The size of each BLOB

frame is specified by the DB_BfrSz keyword, which can range from 8 KB to 256 KB.
To specify a size for the default user BLOB file, set the size parameter of the
DB_UsrBb keyword to a value between 2 and 524,287 frames. To calculate the actual

size of the file in kilobytes, multiply this value by the value of DB_BfrSz. The default
value for DB_UsrBb is 2.

Security mode determines whether DBMaker uses security privileges to control access

to the database. There are five levels of security privileges: CONNECT, RESOURCE,
DBA, SYSDBA and SYSADM.

CONNECT security privilege permits a user to connect to the database, view the

system tables, and access any database objects granted privileges on by the owner, a
DBA, a SYSDBA or a SYSADM. New database objects cannot be created with the
CONNECT security privilege. The CONNECT security privilege must be granted

before being granted any other privilege.

RESOURCE security privilege permits users to create and drop tables, indexes, views,
synonyms, and domains. A user can only drop tables, views, synonyms, and domains

they created. In addition, a user can grant and revoke object privileges to other users
on any database objects created by them. Users with RESOURCE security privilege
also have all privileges of the CONNECT security privilege.

DBA security privilege permits a user to start, terminate, and back up databases,
manage database resources, tablespaces and files, and access all tables, indexes, views,
synonyms, and domains without having been granted privileges. Also grant, change,

and revoke object privileges on any database object owned by any user. A DBA may
not grant security privileges to new users or create new groups, but may add and

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-10

remove users from existing groups. Users with DBA security privilege also have all
privileges of RESOURCE and CONNECT.

SYSDBA security privilege permits a user to grant and revoke security privileges to all
users except users with the SYSADM and SYSDBA authority, create and drop groups,
and add or remove users from groups. Also, change the password of all users except

users with the SYSADM and SYSDBA authority. Users with SYSDBA security
privilege also have all privileges of DBA, RESOURCE and CONNECT.

SYSADM security privilege permits a user to grant and revoke security privileges to all

users, create and drop groups, and add or remove users from groups. Also, change the
password of any user. There is only one user in each database with SYSADM security
privileges. DBMaker automatically creates this user when creating the database, and

assigns the user name SYSADM. A SYSADM may not grant SYSADM security
privileges to any other users. The SYSADM also has all privileges of SYSDBA, DBA,
RESOURCE, and CONNECT.

Set the security mode before creating a database. After creating a database, the security
mode cannot change unless the database is unloaded and recreated. Use the
DB_Secur keyword in the dmconfig.ini file to set the security mode. If the DB_Secur
keyword is not used when creating a database, the security mode is ON by default.

When security mode is ON, only users with appropriate security privileges can
connect to the database. A user name and password are required to connect to a

database. DBMaker maintains a list of authorized users and their security privileges
for the database, and checks this list to determine the specific commands each user can
execute.

When security mode is OFF, any user can connect to a database with any user name.
Passwords are not required to connect to a database, and DBMaker ignores passwords.
DBMaker does not maintain a list of users or security privileges for the database, and

any user can execute any command.

When executing the CREATE DATABASE command, DBMaker creates a new
database, starts the database, and connects you as the SYSADM. DBMaker does not

assign a password to the SYSADM user when it is created. Change the SYSADM
password immediately after creating the database to prevent unauthorized access to

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-11

the database. DBMaker starts a newly created database in single-user mode to prohibit
other users from logging on to the database before you can change the SYSADM

password. To put the new password into effect and allow other users to connect, shut
down the database and restart it in single or multi-user mode.

DBMaker starts all databases in single-user mode by default. To start a database in

multi-user mode, use the DB_SvAdr and DB_PtNum keywords in the client-side
dmconfig.ini file and the DB_PtNum keyword in the server-side dmconfig.ini file.

The DB_SvAdr keyword specifies the IP address or host name of the computer the

DBMaker server is running on. This keyword is required only on the client side; it is
optional on the server side. To specify an IP address or host name, set the DB_SvAdr
keyword to any valid IP address or host name. Use a hostname; also ensure that the

Domain Name Service (DNS) is properly set up on your computer.

The DB_PtNum keyword specifies the port number the DBMaker server is bound to.
This keyword is required on both the client and server sides. To specify a port

number, set the DB_PtNum keyword to a value between 1,025 and 65,535. If not
specifying a port number, DBMaker uses port number 23,000 by default.

database_name Name of the new database to create

Figure 6-2 CREATE DATABASE syntax

 Example 1

The following creates a new database named Accounts with the default settings for all

parameters. A database configuration section for this database does not exist in the
dmconfig.ini file when this command is executed. This creates a single-user database
in the application directory using the default file names ACCOUNTS.SDB,

ACCOUNTS.SBB, ACCOUNTS.DB, ACCOUNTS.BB and ACCOUNTS.JNL
and the default file sizes of 600 KB for the .SDB and .DB files, 20 KB for the .SBB
and .BB files, and 4,000 KB for the .JNL file. To start this database in multi-user

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-12

mode, add the DB_SvAdr and DB_PtNum keywords to the Accounts database
configuration section in the dmconfig.ini file after creating the database.
dmSQL> CREATE DATABASE Accounts;

 Example 2

The following creates a new database named Accounts using the settings shown in the

dmconfig.ini section below.
dmSQL> CREATE DATABASE Accounts;

 Excerpt

This database configuration section exists in the dmconfig.ini file when the command
is executed. This creates a single-user database with security in the
C:\DATABASE\ACCOUNTS directory, using file names ACCOUNTS.SDB for the

system data file, ACCOUNTS.SBB for the system BLOB file, ACNTDATA.DB for
the default-user data file, ACNTBLOB.BB for the default user BLOB file, and
ACNTHIST.JN1, ACNTHIST.JN2, and ACNTHIST.JN3 for the three Journal

files. The file sizes are 600 KB for the system data file, 20 KB for the system BLOB
file, 1,000 KB for the default user data file, 8,000 KB for the default user BLOB file,
and 2,000 KB for each of the three Journal files. To start this database in multi-user

mode, add the DB_SvAdr and DB_PtNum keywords to the Accounts database
configuration section in the dmconfig.ini file after creating the database.
[ACCOUNTS]
DB_DbDir = C:\DATABASE\ACCOUNTS
DB_DbFil = ACCOUNTS.SDB
DB_BbFil = ACCOUNTS.SBB
DB_UsrDb = ACNTDATA.DB 250
DB_UsrBb = ACNTBLOB.BB 250
DB_BfrSz = 32
DB_JnFil = ACNTHIST.JN1, ACNTHIST.JN2, ACNTHIST.JN3
DB_JnlSz = 500

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-13

6.3 DEF TABLE
The dmSQL command DEF TABLE is used to display schema information for a
specified table. This command should not be used on system tables.

Figure 6-3 DEF TABLE Command

 Example 1a

Create a table:
dmSQL> CREATE TABLE tb_tmp(c00_serial SERIAL, c01_int INTEGER, c02_char
CHAR(20));

 Example 1b

Execute the command:
dmSQL> DEF TABLE tb_tmp;

 Result
dmSQL> DEF TABLE tb_tmp;
dmSQL> create table SYSADM.TB_TMP (
 C00_SERIAL SERIAL(1),
 C01_INT INTEGER default null ,
 C02_CHAR CHAR(20) default null)
 in DEFTABLESPACE lock mode row fillfactor 100;

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-14

6.4 DEF VIEW
The dmSQL command DEF VIEW is used to display the construction of definitions.
This command should not be used on system views.

Figure 6-4 DEF VIEW Command

 Example 1a

Create a view:
dmSQL> CREATE VIEW view_tmp AS SELECT c00_serial, c01_int FROM tb_tmp;

 Example 1b

Execute the command:
dmSQL> DEF VIEW view_tmp;

 Result
dmSQL> DEF VIEW view_tmp;
dmSQL> CREATE VIEW SYSADM.VIEW_TMP AS SELECT c00_serial, c01_int FROM
SYSADM.TB_TMP;

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-15

6.5 DISCONNECT
The DISCONNECT command closes an active database connection. Any user with
CONNECT or higher security privileges can execute the command.

AUTOCOMMIT mode controls when DBMaker will commit a transaction. When
AUTOCOMMIT mode is on, each command is treated as a separate transaction.
DBMaker automatically commits each command executed if it completes successfully,

or rolls it back if an error occurs during execution. When AUTOCOMMIT mode is
off, all commands between successive COMMIT WORK commands form a single
transaction.

Executing the COMMIT WORK command commits any changes made in the
transaction, and executing the ROLLBACK WORK command rolls back all changes.
When disconnecting from a database and AUTOCOMMIT mode is off, the active

transaction is aborted. Any changes made by the transaction are not recorded in the
database.

When disconnecting from a multi-user database, the database remains active and

accessible to other users. When disconnecting from a single-user database running on
UNIX the database shuts down. When disconnecting from a multiple-connection
database running on Windows, the database shuts down only if you are the last

connected user.

Figure 6-5 DISCONNECT syntax

 Example

The following disconnects an active database.
dmSQL> DISCONNECT;

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-16

6.6 EXPORT
The Export command facitates the extraction of data from database tables and inserts
the data into text files. There are two configurations used. The export command

interface is used for specifying command options. The description file is used for
specifying the export file format.

EXPORT COMMAND INTERFACE

The Export command syntax is as follows:

<data_file> This is the target file into which you will insert the data. It
should be in full path. If you do not specify data_file, the export file name will be
<table_name>_out.txt.

TABLE Please specify the table you want to export.

[DESCRIPTION <description_file>] … This is the description file for the data format
in the resulting data file. In the description file, users will specify some rules for the

resulting data file. Refer to the DESCRIPTION FILE FORMAT section for more
information. If the description file is not specified, the description file name is
<table_name>_out.dsc. If this file does not exist, DBMaker uses the default output

format.

The default file format is the variable format, meaning:

• TAB is the column delimiter

• New line characters are row terminators

• No quotation marks

• All columns in the source table are exported in the order as they are in the table

[LOG <log_file>]This file logs the errors that occur during the course of unloading
data. If this option is not specified, the default log file name, export.log, will be used.

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-17

[STOP_ON_ERROR]… Specifies that you want want to stop unloading data if an
error occurs. If this option is not specified, the unloading of data will continue even if

an error has occured.
EXPORT
[INTO <data_file>]
TABLE [<owner_name>.]<table_name>
[DESCRIPTION <description_file>]
[LOG <log_file>]
[STOP_ON_ERROR]

DESCRIPTION FILE

You can specify the format of the description file for formatting the unloading result.
Two types of format can be used, fixed format and variable format.

FIXED FORMAT DESCRIPTION FILE

When the fixed format description file is used, users want each column of the export
result to be aligned vertically. The separators used for alignment will be space

characters.

FORMAT = FIXED …This specifies the description file format for fixed length data
files.

[LOB_FORMAT= INTERNAL | EXTERNAL]…This specifies that when exporting
columns of large object types (such as blob, clob, nclob, nblob and other files) external
files will be generated. For each column of large object type in each row, an external

file will be generated. If this option is not specified, the content of data will be
embedded in a datafile.

When naming external files it's important to keep the following in mind:

blobtempdir<m>\blbtmpf<n>.<tmp | txt>.

m specifies the minimum un-used number counted from 1 in the directory.

For example, if there are already directories named blobtempdir1, blobtempdir2 and

blobtempdir3, the newly created directory for containing external files will be
blobtempdir4.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-18

n specifies the minimum un-used number counted from 1 in the directory.

Whether the file extension name is tmp or txt depends on whether the exported

column is BLOB type, FILE type or CLOB type. If the column type is BLOB or
FILE, the file extension name will be tmp. Otherwise, the column type is txt.

server_column_name…This lists the names of the source table columns that are going

to be exported from the database. If there are spaces in table name, use double quotes
to enclose the column names.

column_position Specifies the column byte position in data file.

server_columnname and column_position are separated by space character(s).
column_position is specified by two numbers that are separated by (:).For example a
1:40 means the data loader should look for data from 1st byte to 40th byte in data file.

We will use space characters to align the data field vertically. If the data in the source
table exceeds the field length, the data output will be truncated.
FORMAT=FIXED
[LOB_FORMAT=INTERNAL | EXTERNAL]
<server_column_name> <column_position>

EXPORT

owner_name

TABLE

INTO data_file

DESCRIPTION description_name

LOG log_file STOP_ON_ERROR

table_name

Figure 6-6 EXPORT syntax

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-19

VARIABLE FORMAT DESCRIPTION FILE

When variable format description file is chosen, the fields of resulting data output will
be separated by a user specified delimiter.

FORMAT=VARIABLE… specifies the resulting output file is in variable format.

[COLUMN_DELIMITER=<delimiter>]… This specifies a character that separates
each column in datafile. The character should be single quoted. For example, to

indicate that a SPACE is used as column delimiter, use ' '. Aside from normal
characters, take the following escape sequences that represent special characters.

CHARACTER ESCAPE SEQUENCE REPRESENTATION
TAB \t

NEW LINE \n

Table 6-1 Character and Escape Sequence

For example, if the delimiter is a TAB, users will use '\t' in <delimiter>. If the column
delimiter is not specified, we will use TAB (\t) as the column delimiter. Use discretion
when choosing a delimiter.

If the number of column delimiters is fewer than the number of target table columns
specified by users, NULL will be used for the insert value.

[ROW_TERMINATOR=<row_terminator>]…This string denotes the end of a row.

[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE] …This indicates that the
output data will be quoted by either single quotes or double quotes. If there is
quotation mark in the data, the output will show two consecutive quotation marks.

[LOB_FORMAT=INTERNAL | EXTERNAL]… This specifies that when exporting
columns of large object types, such as blob, clob, nclob, nblob and other large files,
external files will be generated. For each column of large object type in each row, an

external file will be generated. If this option is not specified, the content of the data
will be embedded in a datafile.

When naming external files it's important to keep the following in mind:

blobtempdir<m>\blbtmpf<n>.<tmp | txt>.

m specifies the minimum un-used number counted from 1 in the directory.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-20

 For example, if there are already directories named blobtempdir1, blobtempdir2 and
blobtempdir3, the newly created directory for containing external files will be

blobtempdir4.

n specifies the minimum un-used number counted from 1 in the directory.

Whether the file extension name is tmp or txt depends on whether the exported

column is BLOB type, FILE type or CLOB type. If the column type is BLOB or
FILE, the file extension name will be tmp. Otherwise, the column type is txt.

server_column_name… This variable lists the names of columns of a server table which

are to be exported. The order of these names represents the order of column export. If
there is no such list, all the columns in source table will be export in the same order as
that of table columns.
FORMAT=VARIABLE
[COLUMN_DELIMITER=<delimiter>]
[ROW_TERMINATOR=<row_terminator>]
[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE]
[LOB_FORMAT=INTERNAL | EXTERNAL]
[<server_column_name>]

IMPORT/EXPORT DATA RULES

The following table outlines the rules that must be applied when attempting to import
or export data to or from a file.

DATA

TYPE
IMPORT/EXPORT

FORMAT
EXAMPLE

BINARY Use HEX format
To import the binary number
"0x004D2", use 004D2 in
datafile

CHAR Characters are used exclusively
To import the word "inception",
use inception in the datafile

NCHAR

Three formats can be
used: auto, hex format or
character.
Use description flag
IMPORT_NCHAR_FORMA
T to indicate user's option in

To import the word "word", use
77006f0072006400 or word in
datafile

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-21

DATA

TYPE
IMPORT/EXPORT

FORMAT
EXAMPLE

description file.
NCHAR_AUTO option is
trying to import data as HEX
format first. If fails, then try
import data as character.
NCHAR_HEX format option
is importing data as HEX
format.
NCHAR_CHAR format
option is importing data as
characters.

VARCHAR See CHAR data type

NVARCHA
R

See NCHAR data type

DATE
The format YYYY/MM/DD
will be used for exporting

To import the date
"2003/07/25", use 2003/07/25 in
the datafile

TIME
Export and import will use the
format HH:MM:SS

To import the time "14:30:25",
use 14:30:25 in the datafile

TIMESTAM
P

The combination of DATE
format and TIME format forms
the format of TIMESTAMP

to import the timestamp
"2003/07/25 14:30:25", use
2003/07/25 14:30:25 in data file

DECIMAL
Use numeric data
representation

To import the number "36.82",
use 36.82 in data file

DOUBLE
Use numeric data as described
in DECIMAL or scientific
notation of numbers

To import the number "13e+12",
use 13e+12 in datafile

FLOAT See DOUBLE

INTEGER Use integer data
To import the integer "576", use
576 in datafile

LONG
VARBINAR
Y

Two formats can be used:
embedded or external file
format.
For embedded format, HEX

(1) embedded format:
The format used will be the same
as BINARY.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-22

DATA

TYPE
IMPORT/EXPORT

FORMAT
EXAMPLE

characters are used.
For external file format, the
URL is provided.
Use description flag
LOB_FORMAT to indicate
your option. For details see
description file specifications.

(2) external file format:
For example, if users want to
import a binary file whose full
path is "c:\My
Document\GRAPH.GIF". The
URL provided will be c:\My
Document\GRAPH.GIF

LONG
VARCHAR

Similar to the case for LONG
VARBINARY, two formats can
be used. The input data will be
in ASCII string instead of HEX
string.

(1) embedded format:
Same as CHAR format.
(2) external file format:
Same as LONG VARBINARY.

FILE For FILE type, import/export
will adopt the same rule for
LONG VARBINARY.

OID Same rule as INTEGER

SERIAL Same rule as INTEGER

SMALLINT Same rule as INTEGER

NULL
DATA

For variable format, NULL
data is recognized by the fact
that there's nothing between
two consecutive delimiters.
For fixed format, NULL data
are recognized by the fact that
there are only space characters
between columns.

Table 6-2 Import/Export Data Rules

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-23

6.7 IMPORT
The Import command is used for extracting data from a text file and then inserting
the data into database tables. The import command interface is used for specifying

command options. The description file is used for specifying the import file format.

IMPORT COMMAND INTERFACE

The Import Command Interface provides you with several options for importing data.
Options include controling the stoppage criteria for data loading, the logging of errors

and the data encoding of source data files. The format, of source data files, is
described in the description file.

[<owner_name>.]<table_name> … This identifies the table to be loaded from the

datafile. If you do not specify the <owner_name>, the current connection user will be
assigned as the owner.

[FROM <data_file>] … This is the actual file that contains data to be loaded. If you

do not specify data_file, the datafile name will be <table_name>_in.txt. For example,
if the import table name is t1 and datafile name is not specified in command, the
datafile name will be t1_in.txt.

[DESCRIPTION <description_file>]… This is the description file for describing the
data format in the datafile. If this option is not specified, the description file name will
be assigned as <table_name>_in.dsc. For example, if the import table name is t1 and

description file is not specified, the description file name will be assigned as t1_in.dsc.
If this file is not found, a default description file format will be used, variable
description file format.

[LOG <log_file>] This identifies the log file, which logs any errors during the
course of data loading. It will show the content of the record, which triggers the error
as well as the corresponding error message. If you do not specify this option, the

default log name will be import.log.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-24

[STOP_ON_ERROR]… The loading of data will stop if an error occurs during the
import process if this variable is set. If it is not specified, the loading will continue

even when an error occurs.
IMPORT [<owner_name>.]<table_name>
[FROM <data_file>]
[DESCRIPTION <description_file>]
[LOG <log_file>]
[STOP_ON_ERROR]

IMPORT

FROM data_file

table_name

owner_name

DESCRIPTION description_file

LOG log_file STOP_ON_ERROR

Figure 6-7 IMPORT syntax

DESCRIPTION FILE

Two types of description file are used. One is fixed format and the other is variable

format. Parse errors in the description file will be shown as clearly as possible. You will
know why the error has happened by checking the error message. The error message
will display the problem that occurred when parsing a specific word.

FIXED FORMAT DESCRIPTION FILE

FORMAT=FIXED ...When the format is set to fixed this means the description file
describes the format for fixed length datafiles.

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-25

[START_WITH_ROW=<row_number>]… You can specify from which record you
want to start loading data. The default number is 1, if you do not specify this option.

If START_WITH_ROW is greater than total rows of data in datafile, no data will be
loaded. The row_number is must be a positive number.

[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>] … This lets you

specify the interval of the rows of records loaded between each commit-transaction. If
this option is not specified, DBMaker will commit transaction for every 5 rows. If the
variable is set at -1, there will be no commit. In this case you must commit transaction

manually if you want the load to be effective. If the variable is set at 0, the entire
import is seen as a single transaction. The system will then issue a commit after the
loading is finished.

The number of rows committed will still count a record even if an error occurs when
loading the record.

For example, you set NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=10,

and an error occurs when the 4th record is loaded. The 1st through 3rd records and 5th
through 10th records will still be committed and the 1st through 10th records are still
seen as one transaction unit. Of course, when STOP_ON_ERROR is specified, the

5th record through the 10th record are not committed; only the 1st through 3rd records
are committed.

This option is valid only when auto-commit is off.

[LOB_FORMAT=INTERNAL | EXTERNAL] … If clob/blob format is internal, the
text in data file is seen as the data that is going to be imported. Otherwise, the text is
seen as a URL to external files that are going to be imported.

server_column_name …This lists the names of the target table columns that are going
to be imported from a datafile. If there are spaces or equal signs in the table column
name, use double quotes to enclose it.

column_position This is the column byte position in datafiles. server_column_name
and column_position are separated by space characters. column_position is specified by
two numbers that are separated by (:). For example, a 1:40 means the data loader

should look for data from the 1st byte through the 40th byte in a datafile. Use space
characters to align the data field vertically. If the data in the source table exceeds the

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-26

field length, the rest of row data will be truncated. Each line is terminated by either
new line or a carriage return and a new line, depending on whether the loader is a

Windows platform. If a line is smaller than the maximum position, spaces will be
padded to fill the hole. If a line is longer than the maximum position, the rest of the
line is ignored.
FORMAT=FIXED
[START_WITH_ROW=<row_number>]
[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>]
[LOB_FORMAT=INTERNAL | EXTERNAL]
<server_column_name> <column_position>

NOTE The fields, server_column_name, and column_position are separated by space
characters.

 An example for importing a file with fix format description file is as follows:

The datafile exists as follows:
Davolio Nancy Sales Representative Ms.
Fuller Andrew Vice President, Sales Dr.
Leverling Janet Sales Representative Ms.
Peacock Margaret ... Sales Representative Mrs.
Buchanan Steven Sales Manager Mr.
Suyama Michael Sales Representative Mr.
King Robert Sales Representative Mr.

The description file for this datafile may look like this:
START_WITH_ROW=1
NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=5
Name 1:20
Position 20:45
Gender 50:54

VARIABLE FORMAT DESCRIPTION FILE
FORMAT=VARIABLE
[START_WITH_ROW=<row_number>]
[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>]
[{COLUMN_DELIMITER=<delimiter>}]
[ROW_TERMINATOR=<row_terminator>]
[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE]
[ESCAPE_CHAR=YES|NO]

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-27

[LOB_FORMAT=INTERNAL | EXTERNAL]
[<server_column_name> <column_number>]

FORMAT=VARIABLE… This means this file contains the format for variable length
description files.

[START_WITH_ROW=<row_number>]… You can specify from which record you
want to start loading data. The default number is 1, if you do not specify this option.
If START_WITH_ROW is greater than total rows of data in datafile, no data will be

loaded. The row_number is must be a positive number.

[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>] … This lets you
specify the interval of the rows of records loaded between each commit-transaction. If

this option is not specified, DBMaker will commit transaction for every 5 rows. If the
variable is set at -1, there will be no commit. In this case you must commit transaction
manually if you want the load to be effective. If the variable is set at 0, the entire

import is seen as a single transaction. The system will then issue a commit after the
loading is finished.

The number of rows committed will still count a record even if an error occurs when

loading the record.

For example, you set NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=10,
and an error occurs when the 4th record is loaded. The 1st to 3rd records and 5th to 10th

records will still be committed and the 1st to 10th records still seen as one transaction
unit. Of course, when STOP_ON_ERROR is specified, the 5th record to 10th record
won't be committed at all only the 1st to 3rd records will be committed.

This option is valid only when auto-commit is off.

[COLUMN_DELIMITER=<delimiter>]… This specifies a character that separates
each column in datafile. The character should be single quoted. For example, to

indicate that a SPACE is used as column delimiter, use ' '. Aside from normal
characters, take the following escape sequences that represent special characters.

CHARACTER ESCAPE SEQUENCE

REPRESENTATION
TAB \t

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-28

NEW LINE \n

Table 6-3 Character and Escape Sequence

For example, if the delimiter is a TAB, users will use '\t' in <delimiter>. If the column

delimiter is not specified, we will use TAB (\t) as the column delimiter. Use discretion
when choosing a delimiter.

If the number of column delimiters is fewer than the number of target table columns

specified by users, NULL will be used for the insert value.

[ROW_TERMINATOR=<row_terminator>] … This is a string that denotes the end
of a row. The row_terminator should be double-quoted. The escape sequence rule for

column delimiter applies to row terminator. In addition to that, the carriage-return
also can be the escape sequence:

CHARACTER ESCAPE SEQUENCE

REPRESENTATION
CARRIAGE RETURN \r

Table 6-4 Character and Escape Sequence

For example, if a carriage return and a new line character form a row terminator, the
<row_terminator> should be "\r\n". If no row terminator is specified, a new line

character ('\n') will be used as row terminator. The number of characters in row
terminator should not be greater than 2.

Note that, no column delimiter should be in row_terminator.

[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE] … This indicates whether
the alphabetic data in one field of a data source file is quoted. If SINGLE_QUOTE is
specified, the data enclosed by single quotes is seen as one column of data. If

DOUBLE_QUOTE is specified, the data enclosed by double quotes is seen as one
column of data.

[ESCAPE_CHAR=YES | NO] … This indicates whether an escape character (\) is used

or not. The default is YES. If the escape character is used, the column delimiter
character after escape character is seen as real data. For example, if we specify that a
TAB be used as the column delimiter, and ESCAPE_CHAR is YES, a \TAB data is

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-29

seen as TAB in data instead of column delimiter. For row terminator, this escape
character means the line continues, and the \n is seen as real data. This rule also

applies to the quotation mark.

[LOB_FORMAT=INTERNAL | EXTERNAL] … If clob/blob format is internal, the
text in the datafile is seen as the data that is going to be imported. Otherwise, the text

is seen as a URL to external files that are going to be imported.

server_column_name … This lists the names of the target table columns that are going
to be imported from a datafile. If there are spaces or equal signs in the table column

name, use double quotes to enclose it.

column_number This is the cardinal number of each field in data file.
server_column_name and column_number are separated by space characters.

NOTE Note that if server_column_name and column_number are not specified, all
columns in datafile will be imported into target table columns in the same order
as datafile columns. That is to say, the 1st column in datafile will be imported as
1st column in the table, and the 2nd column in datafile will be imported as the
2nd column in table, etc. If the number of columns in datafile is greater than
that of the target table, the remaining columns in datafile will be ignored. If,
on the other hand, the number of columns in datafile is smaller than that of the
target table, the remaining columns in target table will be inserted with NULL.

DEFAULT VARAIBLE FORMAT DESCRIPTION FILE

It's optional that users specify the description file for their datafile format. If users do
not specify the description file, a default description format is assumed. The default
format means the following description file is used (On Win32 platform, the

ROW_DELIMITER="\r\n"):
START_WITH_ROW=1
NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=5
COLUMN_DELIMITER="\t"
ROW_TERMINATOR="\n"

 An example for importing a file with variable format description file is as follows:

A datafile exists:
Davolio Nancy,Sales Representative,Ms.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-30

Fuller Andrew,"Vice President, Sales",Dr.
Leverling Janet,Sales Representative,Ms.
Peacock Margaret,Sales Representative,Mrs.
Buchanan Steven,Sales Manager,Mr.
Suyama Michael,Sales Representative,Mr.
King Robert,Sales Representative,Mr.

The description file for this data file may look like this:
START_WITH_ROW=1
NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=5
COLUMN_DELIMITER=","
ROW_TERMINATOR="\n"
DOUBLE_QUOTE
Name 1
Position 2
Gender 3

IMPORT/EXPORT DATA RULES

The following table outlines the rules that must be applied when attempting to import
or export data from or to a file.

DATA TYPE IMPORT/EXPORT
FORMAT

EXAMPLE

BINARY Use HEX format
To import the binary
number "0x004D2", use
004D2 in data file

CHAR Characters are used exclusively
To import the word
"inception", use
inception in the data file

NCHAR

Three formats can be used: auto,
hex format or character.
Use description flag
IMPORT_NCHAR_FORMAT to
indicate user's option in description
file.
NCHAR_AUTO option is trying to
import data as HEX format first. If
fails, then try import data as

To import the word
"word", use
77006f0072006400 or
word in data file

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-31

DATA TYPE IMPORT/EXPORT
FORMAT

EXAMPLE

character.
NCHAR_HEX format option is
importing data as HEX format.
NCHAR_CHAR format option is
importing data as characters.

VARCHAR See CHAR data type

NVARCHAR See NCHAR data type

DATE

The format YYYY/MM/DD will be
used for exporting

To import the date
"2003/07/25", use
2003/07/25 in the
data file

TIME
Export and import will use the
format HH:MM:SS

To import the time
"14:30:25", use
14:30:25 in the data file

TIMESTAMP
The combination of DATE format
and TIME format forms the format
of TIMESTAMP

to import the timestamp
"2003/07/25 14:30:25",
use 2003/07/25
14:30:25 in data file

DECIMAL Use numeric data representation
To import the number
"36.82", use 36.82 in
data file

DOUBLE
Use numeric data as described in
DECIMAL or scientific notation of
numbers

To import the number
"13e+12", use 13e+12 in
data file

FLOAT See DOUBLE

INTEGER Use integer data
To import the integer
"576", use 576 in
data file

LONG
VARBINARY

Two formats can be used: embedded
or external file format.
For embedded format, HEX
characters are used.
For external file format, the URL is
provided.

(1) embedded format:
The format used will be
the same as BINARY.

(2) external file format:
For example, if users

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-32

DATA TYPE IMPORT/EXPORT
FORMAT

EXAMPLE

Use description flag
LOB_FORMAT to indicate your
option. For details see description
file specifications.

want to import a binary
file whose full path is
"c:\My
Document\GRAPH.GI
F". The URL provided
will be c:\My
Document\GRAPH.GI
F

LONG
VARCHAR

Similar to the case for LONG

VARBINARY, two formats can be
used. The input data will be in

ASCII string instead of HEX string.

(1) embedded format:
Same as CHAR format.
(2) external file format:
Same as LONG
VARBINARY.

FILE For FILE type, import/export will

adopt the same rule for LONG
VARBINARY.

OID Same rule as INTEGER

SERIAL Same rule as INTEGER

SMALLINT Same rule as INTEGER

NULL DATA For variable format, NULL data is

recognized by the fact that there's
nothing between two consecutive

delimiters.

For fixed format, NULL data is

recognized by the fact that there are
all space characters between
columns.

Table 6-5 Import/Export Data Rules

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-33

6.8 LOAD
The Load command is a tool provided by dmSQL, it is used to transfer a database
object, already unloaded to a text file, into the database. There are seven options: load

database, load table, load schema, load data, load project, load module, and load
procedure. Only load the file that is unloaded in the same option. For example, load a
database from the text file that is unloaded with database option.

When loading a text file, set the number of commands to automatically commit the
transaction. The default number is 1000. The size of n will affect whether the
transaction succeeds or not and the speed of loading. The Journal will fill easily with a

large n value and could cause the transaction to fail. A small n value will increase the
commit times and slow down the speed of loading.

If there are errors occurring during the loading procedure, an error messages will be

recorded in a log file, which the system will use to undo executed commands. The log
file is stored in the same directory as the external text file being loaded and does not
stop the loading procedure.

Figure 6-8 LOAD syntax

LOAD DB [DATABASE]
Use the command to transfer the contents of a database to a new database. First,
unload the database to transfer to an external text file, and then use the "load db"

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-34

command to load the contents of the database from the text file. Before loading a
database, create a new one. The name of the new database can be different from the

old one. Only a user with DBA, SYSDBA or SYSADM security priviledge may
execute this command.

However, if a user use the command SET UNLOAD EXTERNAL

'connection_string'(the format of connection_string is
"DSN=<db_name>;UID=<user_name>;PWD=<password>;") before using the
command UNLOAD DB TO file_name, dmSQL will not unload data into the scrip

file. Therefore, when a user loads the database with this scrip file, dmSQL will
connect to ODBC driver manager’s data source, reads data from it and then save data
into the local database directly. dmSQL uses "set external [database|db]

'connection_string'" in the scrip file to connect external database, and, if fails, an error
will be returned. dmSQL only keeps the last external database connection, and
therefore close previous external database connections if a new one is set. In addition,

because there is no disconnect command, the external database will be disconnected
only when dmSQL tool is closed.

The utility will work in Journal mode if the loaddb is set in safe mode. The load
utility will rollback to the last committed command if an error occurs during loading,

the error messages will return to screen, and write to the log file of the load utility.

When using the set loaddb in fast mode, the rule for loading the utility in DBMaker
versions earlier than 3.6, will make the whole load procedure work under the no
Journal mode. Setting loaddb in fast mode will speed up the load utility, but it will

make the database shut down in no Journal mode if any error occurs.

For example, suppose that the load file has tablespace creation but it is not specified in
the dmconfig.ini file. If loaddb is set to use the safe option, the following error
message, "ERROR(8002): [DBMaker] keyword entry is required for configuration

file", will be reported and then the load command will rollback. If loaddb is set to use
the fast option, then the following error message occurs, "ERROR(30017),
[DBMaker] errors occurred on no-Journal mode, shut down database". The default

option is "set loaddb safe".

 Example

The following set option for loaddb has been added to versions above DBMaker 3.6.

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-35

SET LOADDB [SAFE | FAST]

LOAD TABLE

The option permits loading the contents of a table, including schema and data, from a
text file. When loading a table from a text file, make sure that the table name is

unique.

LOAD SCHEMA

The option allows users to load the schema, not including the data, from a table
contained in a text file. When loading a table schema from a text file, ensure that the

table name is unique.

LOAD DATA

A corresponding table must exist when loading data from an external text file. In
versions earlier than 3.6 when the errors occur during the LOAD DATA procedure, it

will rollback to the last committed command.

 If loaddata skip error, is set then the following error messages will be skipped during
the loading of data:

ERROR(401) unique key violation

ERROR(410) referential constraint violation: value does not exist in parent
key

ERROR(6521) table or view does not exist

ERROR(6002) syntax error near or at

ERROR(6015) incomplete SQL statement input

The error will be skipped and the load utility will resume execution of subsequent
commands. The above errors are the most common errors to occur during loading of
data. When the load data stop or stop on error is set, the whole load command will

rollback if errors occur. The default value for this option is set loaddata skip [error]. All
the error messages occurred during the loading of data will be written into the log file.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-36

 Example

DBMaker 3.6 and later versions support the following options.
SET LOADDATA SKIP [ERROR] | STOP [ON ERROR]

LOAD MODULE

The option allows a user to load a module from an external text file.

LOAD PROJECT

The option allows a user to load a project from an external text file.

LOAD PROC [PROCEDURE]

The option allows a user to load a stored procedure from an external text file.

 Example 1

The following command loads the database from a file named "empdb", and commits
it automatically every 100 commands during loading. The system will generate a log

file named "empdb.log" in the same directory.
dmSQL> LOAD DB FROM empdb 100;

 Example 2

The following command will load a table from a file named "empfile", and it will
commit automatically every 50 commands during loading.
dmSQL> LOAD TABLE FROM empfile 50;

 Example 3

The following command will permit the loading of data from an external data file
named "datafile" and will commit automatically every 1000 commands using the

default setting.
dmSQL> LOAD DATA FROM datafile;

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-37

6.9 SET DUMP PLAN
A dump plan consists of several ON blocks. The query optimizer divides and
optimizes a query into several logical ON blocks. Simple and joined queries usually

only generate one ON block, where as a complex query like a sub-query may generate
more than one ON block which includes a main-block and sub-blocks.

The optimizer will find the best execution method based on the cost for each ON

block. It will divide each ON block into several PL blocks, and each PL block will
represent an operation like a scan, join, etc.

Set dump plan on turns the dump plan on, accepts queries and executes commands

Set dump plan off turns the dump plan off, this is the default

Set dump plan only ... turns the dump plan on, accepts queries, but doesn't execute

 commands

SET DUMP PLAN ONLY

ON

()

OFF

Figure 6-9 SET DUMP PLAN Syntax

 Example
dmSQL> SET DUMP PLAN ON;
dmSQL> SELECT * FROM tb_tmp ORDER BY c01_int;
dmSQL> SET DUMP PLAN OFF;

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-38

6.10 START DATABASE
The START DATABASE command starts a database to allow users to connect. This
command is normally only used with client/server databases. Only a user with DBA,

SYSDBA or SYSADM security privilege may execute the command.

To start a database without specifying a user-name and password in the START
DATABASE command, use the DB_UsrId and DB_PasWd keywords in the

dmconfig.ini file.

The password is in plain text and can be seen by anyone with the read permission for
the dmconfig.ini file. This keyword is included for convenience only, and may pose a

security risk to the database Use it on an unsecured computer.

database_nameName of the database to start

user_nameName of the user starting the database

passwordCurrent password of user_name

Figure 6-10 START DATABASE syntax

 Example

The following starts the Employees database; the user vivian has DBA, SYSDBA or

SYSADM privileges.

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-39

dmSQL> START DATABASE Employees vivian shuka828;

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-40

6.11 TERMINATE DATABASE
The TERMINATE DATABASE command shuts down a database so other users
cannot connect. This command is normally used with client/server databases. Only a

user with DBA, SYSDBA or SYSADM security privilege may execute the command.

Figure 6-11 TERMINATE DATABASE syntax

 Example

The following terminates the database on an active connection.
dmSQL> TERMINATE DATABASE;

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-41

6.12 UNLOAD
Unload is a tool provided by dmSQL used to transfer the contents of a database to an
external text file. After the unload procedure succeeds, dmSQL will produce two text

files. One stores the script, with extension name s0, to establish the database object
and the other stores the BLOB data, with the extension name bn.

There are eight options for the unload command: unload database, unload table,

unload schema, unload data, unload project, unload module, unload procedure, and
unload procedure definition. Only unload the object that you have the select privilege
on. For instance, if you have the select privilege on a table, then you can only unload

the content of this table. Only a user with DBA, SYSDBA or SYSADM security
privilege may unload the database.

To Unload tables with names containing wild cards like the escape character "\", or

double quotes on the name.

Figure 6-12 UNLOAD syntax

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-42

User can use the set unload splitfile on/off command to split the unloaded script file
according to each table's definition, data, index and other related information. The

default is off.

Set unload splitfile on …… split the unloaded script file.

Set unload splitfle off …… by default, it only unload the database content to <external

text file name>.bn and <external text file name>.so files.

SET UNLOAD SplitFile

ON

OFF

 Example
dmSQL> SET UNLOAD SPLITFILE ON;
dmSQL> UNLOAD DB TO empdb;
dmSQL> SET UNLOAD SPILTFILE OFF;

User can use the set unload browse on/off command to ensure the unload command and

other DML can be used simultaneously and the consistency of the unloaded data before doing

unload operation. The default is off.

Set unload browse on ……the unload command and other DML can be used simultaneously,

meanwhile, dirty data will be unload.

Set unload browse off ……the unload command and other DML can not be used

simultaneously.

SET UNLOAD
BROWSE

ON

OFF

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-43

 Example
dmSQL> SET UNLOAD BROWSE ON;
dmSQL> UNLOAD DB TO empdb;
dmSQL> SET UNLOAD BROWSE OFF;

UNLOAD DB [DATABASE]

Only a user with DBA, SYSDBA or SYSADM security privilege may unload the
content of a database to an external text file. This file includes information about

security, tablespaces, definitions, indices, synonyms, data, etc. For each database,
dmSQL will generate at least two external files, one script, and one BLOB data.

empdb is the name of the external text file. By default, dmSQL will create these files

in the current working directory. In the statement below, there are at least two text
files created, empdb.s0 and empdb.b0. If the unloaded BLOB file empdb.b0 exceeds
the maximum size allowed by the operating system, dmSQL will generate empdb.b1,

empdb.b2 through to empdb.bn sequentially up to a maximum number of 99.
dmSQL will always generate one script file emodb.s0, and its maximum size is set to
the operating system limitation.

 Example 1
dmSQL> UNLOAD DB TO empdb;

However, if a user use the command SET UNLOAD EXTERNAL

'connection_string'(the format of connection_string is
"DSN=<db_name>;UID=<user_name>;PWD=<password>;") before using the
command UNLOAD DB TO file_name, dmSQL will not unload data into the scrip

file namely empdb.s0, Instead, dmSQL will print "set external db 'connection_string'"
in empdb.s0, and unloading tables' data will be printed as "load external db from
'select * from external_table_name' into local_table_name". Please refer to the

following example:

 Example 2
dmSQL> SET UNLOAD EXTERNAL 'DSN=DBSAMPLE5;UID=SYSADM;PWD=;';
dmSQL> UNLOAD DB TO empdb;

Here the scrip file empdb.s0 is as follows:
…

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-44

set external db 'DSN=DBSAMPLE5;UID=SYSADM;PWD=;';
create table Lauser1.Latb3 (
 c1 SMALLINT default null ,
 c2 FLOAT default null ,
 c3 DOUBLE default null ,
 c4 DECIMAL(10, 3) default null ,
 c5 CHAR(10) default null ,
 c6 BINARY(12) default null)
 in DEFTABLESPACE lock mode page fillfactor 100 ;
load external database from 'select * from Lauser1.Latb3' into Lauser1.Latb3;
create index idx31 on Lauser1.Latb3 (c1 asc) in DEFTABLESPACE;
create index idx32 on Lauser1.Latb3 (c3 desc) in DEFTABLESPACE;
create index idx33 on Lauser1.Latb3 (c5 asc) in DEFTABLESPACE;
…

UNLOAD TABLE

Unloads tables to an external file and will record the definition, synonyms, indices,
primary key, foreign keys, and data of the table.

Use the wild cards "_" and "%", which is similar with "?" and "*" in DOS, in the
owner and table name. The wild card "_" represents a character, and "%" represents a
set of characters.

UNLOAD SCHEMA

The usage of this option is very similar with unload table. It can only unload the
definition of a table, and does not unload the data in a table. Uses the same wild cards
as illustrated in the above unload table option.

UNLOAD DATA

This option will unload all data from a table and does not unload the definition of the
table. Unload data uses the same wildcards as the previous two options. Only users
with the SELECT privilege on the unloaded table may execute the unload data

command.

1dmSQL Commands 6

©Copyright 1995-2017 CASEMaker Inc. 6-45

DBMaker 3.6 and later versions support an additional syntax for unloading data:
dmSQL>unload data from (select statement) to file_name. If the select statement is a

join, the projection columns must be from the same table, the following statement is
executable. DDL commands, delete, insert, or updates are not permitted.

 Example 1

Valid syntax
dmSQL> UNLOAD DATA FROM (SELECT tb_doc.c01_int, tb_doc.c02_char FROM tb_doc,
tb_txt WHERE tb_doc.c01_int= tb_txt.c01_int) TO f1;

 Example 2

Illegal syntax
dmSQL> UNLOAD DATA FROM (SELECT tb_doc.c01_int, tb_txt.c01_int FROM tb_doc,
tb_txt WHERE tb_doc.c01_int = tb_txt.c01_int) TO f1;

 Example 3

Illegal syntax, no aggregate or built-in functions are permitted in the projection
columns.
dmSQL> UNLOAD DATA FROM (SELECT AVG(c01_int) FROM tb_doc) TO f1;
dmSQL> UNLOAD DATA FROM (SELECT NOW() FROM tb_doc) TO f1;

 Example 4

Valid syntax, views and synonyms are permitted.
dmSQL> UNLOAD DATA FROM (SELECT * FROM syn_tmp WHERE c01_int > 10) TO f1;
dmSQL> UNLOAD DATA FROM (SELECT * FROM view_tmp WHERE c01_int < 10) TO f1;

UNLOAD PROJECT

This option allows a user to unload a project to an external text file.

UNLOAD MODULE

This option allows a user to unload a module to an external file.

 SQL Command and Function Reference1

 ©Copyright 1995-2017 CASEMaker Inc. 6-46

UNLOAD [PROC | PROCEDURE]

This option allows a user to unload the stored procedures to an external file.

UNLOAD [PROC DEFINITION | PROCEDURE
DEFINITION]

This option allows a user to unload the definition of the stored procedure to an

external text file.

 Example 1

The following will unload the table "e tab" for the current user; if there are any blanks
in the table name add double quotes.
dmSQL> UNLOAD TABLE FROM "e tab" TO empfile;

 Example 2

The following will unload all tables with the names starting with emp for the
SYSADM owner, for example, emptab, empname, … etc.
dmSQL> UNLOAD TABLE FROM SYSADM.emp% TO empfile;

 Example 3

The following will unload the schema of all tables with the name ktab.
dmSQL> UNLOAD SCHEMA FROM %.ktab TO kfile;

 Example 4

The following commands will unload data from a table named abc%.
dmSQL> UNLOAD DATA FROM abc\% TO abcfile;
dmSQL> UNLOAD DATA FROM "abc%" TO abcfile;

	Introduction
	Additional Resources
	Technical Support
	Document Conventions

	SQL Basics
	Syntax Diagrams
	Data Types
	BIGINT
	BIGSERIAL(start)
	BINARY (size)
	CHAR (size)
	DATE
	DECIMAL (NUMERIC)
	DOUBLE
	FILE
	FLOAT
	INTEGER
	JSONCOLS
	LONG VARBINARY (BLOB)
	LONG VARCHAR (CLOB)
	NCHAR (size)
	NVARCHAR (size)
	OID
	REAL
	SERIAL (start)
	SMALLINT
	TIME
	TIMESTAMP
	VARCHAR (size)
	Media Types

	Data Conversion
	Explicit Data Conversion
	Implicit Data Conversion

	RESERVED WORDS

	SQL Commands
	ABORT BACKUP
	ABORT CONNECTION
	ADD TO GROUP
	ADD TRACE
	ALTER DATAFILE
	ALTER INDEX RENAME
	ALTER PASSWORD
	ALTER REPLICATION ADD REPLICATE
	ALTER REPLICATION DROP REPLICATE
	ALTER SCHEDULE
	ALTER TABLE ADD COLUMN
	Column Definition

	ALTER TABLE ADD DYNAMIC COLUMN
	ALTER TABLE DROP COLUMN
	ALTER TABLE DROP DYNAMIC COLUMN
	ALTER TABLE DROP FOREIGN KEY
	ALTER TABLE DROP PRIMARY KEY
	ALTER TABLE FOREIGN KEY
	ALTER TABLE MODIFY COLUMN
	Column Definitions

	ALTER TABLE MODIFY DYNAMIC COLUMN
	ALTER TABLE PRIMARY KEY
	ALTER TABLE RENAME
	ALTER TABLE SET OPTIONS
	ALTER TABLE TO ANOTHER TABLESPACE
	ALTER TABLESPACE
	ALTER TABLESPACE DROP DATAFILE
	ALTER TRIGGER ENABLE
	ALTER TRIGGER REPLACE
	For Each Row Clause
	For Each Statement Clause

	BEGIN BACKUP
	BEGIN WORK
	CHECK
	CHECKPOINT
	CLOSE DATABASE LINK
	COMMIT WORK
	CREATE COMMAND
	CREATE DATABASE LINK
	CREATE DOMAIN
	CREATE GROUP
	CREATE HASH INDEX
	CREATE INDEX
	CREATE PROCEDURE
	FROM FILE
	ESQL SP
	JAVA SP
	SQL SP

	CREATE REPLICATION
	CREATE SCHEDULE
	CREATE SCHEMA
	CREATE SYNONYM
	CREATE TABLE
	Column Definitions
	Primary Key and Unique Definitions
	Foreign Key Definitions
	Table Options
	CREATE TABLE AS SELECT

	CREATE TABLESPACE
	CREATE TEXT INDEX
	Signature Text Index
	Inverted File Text Index

	CREATE TRIGGER
	For Each Row Clause
	For Each Statement Clause

	CREATE VIEW
	DECLARE SET
	DELETE
	DROP COMMAND
	DROP DATABASE LINK
	DROP DOMAIN
	DROP GROUP
	DROP INDEX
	DROP PROCEDURE
	DROP REPLICATION
	DROP SCHEDULE
	DROP SCHEMA
	DROP SYNONYM
	DROP TABLE
	DROP TABLESPACE
	DROP TEXT INDEX
	DROP TRIGGER
	DROP VIEW
	END BACKUP
	EXECUTE COMMAND
	GRANT (Execute Privileges)
	GRANT (Object Privileges)
	GRANT (Security Privileges)
	INSERT
	KILL CONNECTION
	LOAD STATISTICS
	LOCK TABLE
	REBUILD COMMAND
	REBUILD INDEX
	REBUILD INDEX IN ANOTHER TABLESPACE
	REBUILD TEXT INDEX
	REMOVE FROM GROUP
	REMOVE TRACE
	RESUME SCHEDULE
	REVOKE (Execute Privileges)
	REVOKE (Object Privileges)
	REVOKE (Security Privileges)
	ROLLBACK
	SAVEPOINT
	SELECT
	SELECT WITHOUT FROM
	SELECT Clause
	FROM Clause
	WHERE Clause
	Compound Comparisons
	Join Conditions
	GROUP BY Clause
	HAVING Clause
	ORDER BY Clause
	FOR BROWSE Clause
	Aggregate Functions
	WINDOW Functions
	XML Functions

	SET CONNECTION OPTIONS
	No Value Options
	ON/OFF Options
	Number Options
	String Options
	Symbol Options
	Transaction Options

	SET CLIENT_CHAR_SET
	SET ERRMSG_CHAR_SET
	SUSPEND SCHEDULE
	SYNC AUTO INDEX
	SYNCHRONIZE SCHEDULE
	UNLOAD STATISTICS
	UNLOAD STATISTICS Object List

	UPDATE
	UPDATE STATISTICS
	UPDATE STATISTICS Object List

	UPDATE STATISTICS SET
	UPDATE TABLESPACE STATISTICS

	Functions
	Built-in Functions
	ABS
	ACOS
	ADD_DAYS
	ADD_HOURS
	ADD_MINS
	ADD_MONTHS
	ADD_SECS
	ADD_YEARS
	ASCII
	ASIN
	ATAN
	ATAN2
	ATOF
	BLOBLEN
	BLOBLENEX
	CEILING
	CHAR
	CHAR_LENGTH
	CHARACTER_LENGTH
	CHECKMEDIAFORMAT
	CONCAT
	COS
	COSH
	COT
	CURDATE
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_USER
	CURTIME
	DATABASE
	DATEPART
	DAYNAME
	DAYOFMONTH
	DAYOFWEEK
	DAYOFYEAR
	DAYS_BETWEEN
	DEGREES
	DOCTOTXT
	EXISTSNODE
	EXP
	EXTRACT
	EXTRACTVALUE
	FILEEXIST
	FILELEN
	FILELENEX
	FILENAME
	FIX
	FLOOR
	FREXPE
	FREXPM
	FTOA
	HIGHLIGHT
	HITCOUNT
	HITPOS
	HMS
	HOUR
	HTMLHIGHLIGHT
	HTMLTITLE
	HTMTOTXT
	HYPOT
	INSERT
	INVDATE
	INVTIME
	INVTIMESTAMP
	LAST_DAY
	LCASE
	LDEXP
	LEFT
	LENGTH
	LOCATE
	LOG
	LOG10
	LOWER
	LTRIM
	MDY
	MINUTE
	MOD
	MODFI
	MODFM
	MONTH
	MONTHNAME
	NEXT_DAY
	NOW
	PDFTOTXT
	PI
	POSITION
	POW
	PPTTOTXT
	PURETEXT
	QUARTER
	RADIANS
	RAND
	REPEAT
	REPLACE
	RIGHT
	RND
	ROUND
	RTRIM
	SECOND
	SECS_BETWEEN
	SESSION_USER
	SIGN
	SIN
	SINH
	SPACE
	SQRT
	STRTOINT
	SUBBLOB
	SUBBLOBTOBIN
	SUBBLOBTOCHAR
	SUBSTRING
	TAN
	TANH
	TIMEPART
	TIMESTAMPADD
	TIMESTAMPDIFF
	TRIM
	UCASE
	UPPER
	USER
	UTFConvert
	WEEK
	XLSTOTXT
	XMLUPDATE
	YEAR

	User-Defined Functions
	AES_DECRYPT
	AES_ENCRYPT
	DATETOSTR
	TIMETOSTR
	TIMESTAMPTOSTR
	TO_DATE

	System-Stored Procedures
	APPENDBLOB
	APPENDBLOBBYOID
	COPYTABLE
	GETCPUNUMBER
	GETSYSTEMOPTION
	SCHEDULE_ALTER
	SCHEDULE_CREATE
	SCHEDULE_DISABLE
	SCHEDULE_DROP
	SCHEDULE_ENABLE
	SCHEDULE_RELOAD
	SCHELOG_CLEAN
	SETAFFINITY
	SETPRIORITY
	SETSYSTEMOPTION
	SETSYSTEMOPTIONW
	SOADD
	SOCREATE
	SODROP
	SOLOCK
	SOREAD
	SOSET
	SOUNLOCK
	START_DMSCHSVR
	STOP_DMSCHSVR
	TASK_ALTER
	TASK_CREATE
	TASK_DROP
	XMLEXPORT
	Constructing XMLEXPORT Arguments
	Exporting XML Files

	XMLIMPORT
	Constructing XMLIMPORT Arguments
	Importing XML Files

	dmSQL Commands
	CONNECT
	CREATE DATABASE
	DEF TABLE
	DEF VIEW
	DISCONNECT
	EXPORT
	EXPORT COMMAND INTERFACE
	DESCRIPTION FILE

	IMPORT
	IMPORT COMMAND INTERFACE
	DESCRIPTION FILE

	LOAD
	LOAD DB [DATABASE]
	LOAD TABLE
	LOAD SCHEMA
	LOAD DATA
	LOAD MODULE
	LOAD PROJECT
	LOAD PROC [PROCEDURE]

	SET DUMP PLAN
	START DATABASE
	TERMINATE DATABASE
	UNLOAD
	UNLOAD DB [DATABASE]
	UNLOAD TABLE
	UNLOAD SCHEMA
	UNLOAD DATA
	UNLOAD PROJECT
	UNLOAD MODULE
	UNLOAD [PROC | PROCEDURE]
	UNLOAD [PROC DEFINITION | PROCEDURE DEFINITION]

